Merge #1062
1062: docstring ensure signature code formatting r=CarloLucibello a=visr by using a four space indent instead of two Fixes issues seen here:  Where the type signature has no code formatting, and a code block is introduced that throws off the rest of the formatting. Co-authored-by: Martijn Visser <mgvisser@gmail.com>
This commit is contained in:
commit
3cf131b8de
|
@ -11,7 +11,7 @@ struct DataLoader
|
|||
end
|
||||
|
||||
"""
|
||||
DataLoader(data...; batchsize=1, shuffle=false, partial=true)
|
||||
DataLoader(data...; batchsize=1, shuffle=false, partial=true)
|
||||
|
||||
An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations
|
||||
(except possibly the last one).
|
||||
|
|
|
@ -28,7 +28,6 @@ function load()
|
|||
end
|
||||
|
||||
"""
|
||||
|
||||
labels()
|
||||
|
||||
Get the labels of the iris dataset, a 150 element array of strings listing the
|
||||
|
@ -53,7 +52,6 @@ function labels()
|
|||
end
|
||||
|
||||
"""
|
||||
|
||||
features()
|
||||
|
||||
Get the features of the iris dataset. This is a 4x150 matrix of Float64
|
||||
|
|
|
@ -6,7 +6,7 @@ const ϵ = 1e-8
|
|||
# TODO: should use weak refs
|
||||
|
||||
"""
|
||||
Descent(η)
|
||||
Descent(η)
|
||||
|
||||
Classic gradient descent optimiser with learning rate `η`.
|
||||
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`
|
||||
|
@ -441,17 +441,16 @@ function apply!(o::Optimiser, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
InvDecay(γ)
|
||||
InvDecay(γ)
|
||||
|
||||
Applies inverse time decay to an optimiser, i.e., the effective step size at iteration `n` is `eta / (1 + γ * n)` where `eta` is the initial step size. The wrapped optimiser's step size is not modified.
|
||||
```
|
||||
|
||||
## Parameters
|
||||
- gamma (γ): Defaults to `0.001`
|
||||
|
||||
## Example
|
||||
```julia
|
||||
Optimiser(InvDecay(..), Opt(..))
|
||||
Optimiser(InvDecay(..), Opt(..))
|
||||
```
|
||||
"""
|
||||
mutable struct InvDecay
|
||||
|
@ -470,7 +469,7 @@ function apply!(o::InvDecay, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
ExpDecay(eta, decay, decay_step, clip)
|
||||
ExpDecay(eta, decay, decay_step, clip)
|
||||
|
||||
Discount the learning rate `eta` by a multiplicative factor `decay` every `decay_step` till a minimum of `clip`.
|
||||
|
||||
|
@ -483,9 +482,8 @@ Discount the learning rate `eta` by a multiplicative factor `decay` every `decay
|
|||
## Example
|
||||
To apply exponential decay to an optimiser:
|
||||
```julia
|
||||
Optimiser(ExpDecay(..), Opt(..))
|
||||
|
||||
opt = Optimiser(ExpDecay(), ADAM())
|
||||
Optimiser(ExpDecay(..), Opt(..))
|
||||
opt = Optimiser(ExpDecay(), ADAM())
|
||||
```
|
||||
"""
|
||||
mutable struct ExpDecay
|
||||
|
@ -509,7 +507,7 @@ function apply!(o::ExpDecay, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
WeightDecay(wd)
|
||||
WeightDecay(wd)
|
||||
|
||||
Decays the weight by `wd`
|
||||
|
||||
|
|
|
@ -3,8 +3,8 @@ import Zygote: Params, gradient
|
|||
|
||||
|
||||
"""
|
||||
update!(opt, p, g)
|
||||
update!(opt, ps::Params, gs)
|
||||
update!(opt, p, g)
|
||||
update!(opt, ps::Params, gs)
|
||||
|
||||
Perform an update step of the parameters `ps` (or the single parameter `p`)
|
||||
according to optimizer `opt` and the gradients `gs` (the gradient `g`).
|
||||
|
|
|
@ -60,7 +60,7 @@ head(x::Tuple) = reverse(Base.tail(reverse(x)))
|
|||
squeezebatch(x) = reshape(x, head(size(x)))
|
||||
|
||||
"""
|
||||
batch(xs)
|
||||
batch(xs)
|
||||
|
||||
Batch the arrays in `xs` into a single array.
|
||||
|
||||
|
|
Loading…
Reference in New Issue