Merge branch 'master' into gru
This commit is contained in:
commit
403cc26327
@ -37,6 +37,7 @@ These layers don't affect the structure of the network but may improve training
|
||||
|
||||
```@docs
|
||||
Flux.testmode!
|
||||
BatchNorm
|
||||
Dropout
|
||||
LayerNorm
|
||||
```
|
||||
|
@ -7,7 +7,8 @@ module Flux
|
||||
using Juno, Requires
|
||||
using Lazy: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM, GRU, Dropout, LayerNorm,
|
||||
export Chain, Dense, RNN, LSTM, GRU,
|
||||
Dropout, LayerNorm, BatchNorm,
|
||||
SGD, ADAM, Momentum, Nesterov, AMSGrad,
|
||||
param, params, mapleaves
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
testmode!(m)
|
||||
testmode!(m, false)
|
||||
|
||||
Put layers like [`Dropout`](@ref) and `BatchNorm` into testing mode (or back to
|
||||
training mode with `false`).
|
||||
Put layers like [`Dropout`](@ref) and [`BatchNorm`](@ref) into testing mode
|
||||
(or back to training mode with `false`).
|
||||
"""
|
||||
function testmode!(m, val::Bool=true)
|
||||
prefor(x -> _testmode!(x, val), m)
|
||||
@ -45,6 +45,7 @@ end
|
||||
_testmode!(a::Dropout, test) = (a.active = !test)
|
||||
|
||||
"""
|
||||
|
||||
LayerNorm(h::Integer)
|
||||
|
||||
A [normalisation layer](https://arxiv.org/pdf/1607.06450.pdf) designed to be
|
||||
@ -65,3 +66,77 @@ treelike(LayerNorm)
|
||||
function Base.show(io::IO, l::LayerNorm)
|
||||
print(io, "LayerNorm(", length(l.diag.α), ")")
|
||||
end
|
||||
|
||||
"""
|
||||
BatchNorm(dims...; λ = identity,
|
||||
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1)
|
||||
|
||||
Batch Normalization Layer for [`Dense`](@ref) layer.
|
||||
|
||||
See [Batch Normalization: Accelerating Deep Network Training by Reducing
|
||||
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf)
|
||||
|
||||
In the example of MNIST,
|
||||
in order to normalize the input of other layer,
|
||||
put the `BatchNorm` layer before activation function.
|
||||
|
||||
```julia
|
||||
m = Chain(
|
||||
Dense(28^2, 64),
|
||||
BatchNorm(64, λ = relu),
|
||||
Dense(64, 10),
|
||||
BatchNorm(10),
|
||||
softmax)
|
||||
```
|
||||
"""
|
||||
mutable struct BatchNorm{F,V,N}
|
||||
λ::F # activation function
|
||||
β::V # bias
|
||||
γ::V # scale
|
||||
μ # moving mean
|
||||
σ # moving std
|
||||
ϵ::N
|
||||
momentum::N
|
||||
active::Bool
|
||||
end
|
||||
|
||||
BatchNorm(dims::Integer...; λ = identity,
|
||||
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1) =
|
||||
BatchNorm(λ, param(initβ(dims)), param(initγ(dims)), 0., 1., ϵ, momentum, true)
|
||||
|
||||
function (BN::BatchNorm)(x)
|
||||
λ, γ, β = BN.λ, BN.γ, BN.β
|
||||
|
||||
if !BN.active
|
||||
μ = BN.μ
|
||||
σ = BN.σ
|
||||
else
|
||||
T = eltype(x)
|
||||
|
||||
ϵ = T(BN.ϵ)
|
||||
m = size(x, 2) # batch size
|
||||
μ = mean(x, 2)
|
||||
σ = sqrt.(sum((x .- μ).^2, 2) ./ m .+ ϵ)
|
||||
|
||||
# update moving mean/std
|
||||
mtm = T(BN.momentum)
|
||||
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* μ.data
|
||||
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* σ.data .* m ./ (m - 1)
|
||||
end
|
||||
|
||||
λ.(γ .* ((x .- μ) ./ σ) .+ β)
|
||||
end
|
||||
|
||||
children(BN::BatchNorm) =
|
||||
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.momentum, BN.ϵ, BN.active)
|
||||
|
||||
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
|
||||
BatchNorm(BN.λ, f(BN.β), f(BN.γ), BN.μ, BN.σ, BN.momentum, BN.ϵ, BN.active)
|
||||
|
||||
_testmode!(BN::BatchNorm, test) = (BN.active = !test)
|
||||
|
||||
function Base.show(io::IO, l::BatchNorm)
|
||||
print(io, "BatchNorm($(join(size(l.β), ", "))")
|
||||
(l.λ == identity) || print(io, ", λ = $(l.λ)")
|
||||
print(io, ")")
|
||||
end
|
||||
|
@ -26,3 +26,55 @@ using Flux: testmode!
|
||||
y = m(x)
|
||||
@test count(a->a == 0, y) == 0
|
||||
end
|
||||
|
||||
@testset "BatchNorm" begin
|
||||
let m = BatchNorm(2), x = param([1 2; 3 4; 5 6]')
|
||||
|
||||
@test m.β.data == [0, 0] # initβ(2)
|
||||
@test m.γ.data == [1, 1] # initγ(2)
|
||||
# initial m.σ is 1
|
||||
# initial m.μ is 0
|
||||
@test m.active
|
||||
|
||||
# @test m(x).data ≈ [-1 -1; 0 0; 1 1]'
|
||||
m(x)
|
||||
|
||||
# julia> x
|
||||
# 2×3 Array{Float64,2}:
|
||||
# 1.0 3.0 5.0
|
||||
# 2.0 4.0 6.0
|
||||
#
|
||||
# μ of batch will be
|
||||
# (1. + 3. + 5.) / 3 = 3
|
||||
# (2. + 4. + 6.) / 3 = 4
|
||||
#
|
||||
# ∴ update rule with momentum:
|
||||
# .1 * 3 + 0 = .3
|
||||
# .1 * 4 + 0 = .4
|
||||
@test m.μ ≈ reshape([0.3, 0.4], 2, 1)
|
||||
|
||||
# julia> .1 .* std(x, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||||
# 2×1 Array{Float64,2}:
|
||||
# 1.14495
|
||||
# 1.14495
|
||||
@test m.σ ≈ .1 .* std(x.data, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
@test x′[1] ≈ (1 - 0.3) / 1.1449489742783179
|
||||
end
|
||||
|
||||
# with activation function
|
||||
let m = BatchNorm(2, λ = σ), x = param([1 2; 3 4; 5 6]')
|
||||
@test m.active
|
||||
m(x)
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
@test x′[1] ≈ σ((1 - 0.3) / 1.1449489742783179)
|
||||
end
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user