conv docstring formatting
This commit is contained in:
parent
2f7ad895aa
commit
447fd9d604
@ -74,8 +74,10 @@ end
|
||||
|
||||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct ConvTranspose{N,M,F,A,V}
|
||||
@ -138,11 +140,14 @@ end
|
||||
"""
|
||||
DepthwiseConv(size, in=>out)
|
||||
DepthwiseConv(size, in=>out, relu)
|
||||
|
||||
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
Note that `out` must be an integer multiple of `in`.
|
||||
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct DepthwiseConv{N,M,F,A,V}
|
||||
|
Loading…
Reference in New Issue
Block a user