update readme
This commit is contained in:
parent
f55b8cd20e
commit
45141059eb
37
README.md
37
README.md
|
@ -4,39 +4,4 @@
|
||||||
|
|
||||||
Flux is a refreshing approach to machine learning. It provides lightweight abstractions on top of Julia's native GPU and AD support, while remaining fully hackable (right down to the [GPU kernels](https://github.com/FluxML/CuArrays.jl)).
|
Flux is a refreshing approach to machine learning. It provides lightweight abstractions on top of Julia's native GPU and AD support, while remaining fully hackable (right down to the [GPU kernels](https://github.com/FluxML/CuArrays.jl)).
|
||||||
|
|
||||||
Define a simple model using any Julia code:
|
See the [documentation](http://fluxml.github.io/Flux.jl/stable/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
||||||
|
|
||||||
```julia
|
|
||||||
using Flux.Tracker
|
|
||||||
x, y = rand(10), rand(5) # Dummy input / output
|
|
||||||
# `track` defines parameters that we can train
|
|
||||||
W, b = track(randn(5,10)), track(randn(5))
|
|
||||||
# Transform `x` and calculate the mean squared error
|
|
||||||
loss = Flux.mse(W*x .+ b, y)
|
|
||||||
# Calculate and store gradients of `track`ed parameters
|
|
||||||
back!(loss)
|
|
||||||
Tracker.grad(W) # Get the gradient of `W` wrt the loss
|
|
||||||
```
|
|
||||||
|
|
||||||
Define a larger model using high-level abstractions:
|
|
||||||
|
|
||||||
```julia
|
|
||||||
using Flux
|
|
||||||
|
|
||||||
m = Chain(
|
|
||||||
Dense(10, 32, relu),
|
|
||||||
Dense(32, 10), softmax)
|
|
||||||
|
|
||||||
m(rand(10))
|
|
||||||
```
|
|
||||||
|
|
||||||
Mix and match the two:
|
|
||||||
|
|
||||||
```julia
|
|
||||||
using Flux.Tracker
|
|
||||||
x, y = rand(10), rand(5)
|
|
||||||
d = Dense(10, 5)
|
|
||||||
loss = Flux.mse(d(x), y)
|
|
||||||
```
|
|
||||||
|
|
||||||
See the [documentation](http://fluxml.github.io/Flux.jl/stable/) or the [model zoo](https://github.com/FluxML/model-zoo/) for more examples.
|
|
||||||
|
|
Loading…
Reference in New Issue