update readme
This commit is contained in:
parent
f55b8cd20e
commit
45141059eb
37
README.md
37
README.md
|
@ -4,39 +4,4 @@
|
|||
|
||||
Flux is a refreshing approach to machine learning. It provides lightweight abstractions on top of Julia's native GPU and AD support, while remaining fully hackable (right down to the [GPU kernels](https://github.com/FluxML/CuArrays.jl)).
|
||||
|
||||
Define a simple model using any Julia code:
|
||||
|
||||
```julia
|
||||
using Flux.Tracker
|
||||
x, y = rand(10), rand(5) # Dummy input / output
|
||||
# `track` defines parameters that we can train
|
||||
W, b = track(randn(5,10)), track(randn(5))
|
||||
# Transform `x` and calculate the mean squared error
|
||||
loss = Flux.mse(W*x .+ b, y)
|
||||
# Calculate and store gradients of `track`ed parameters
|
||||
back!(loss)
|
||||
Tracker.grad(W) # Get the gradient of `W` wrt the loss
|
||||
```
|
||||
|
||||
Define a larger model using high-level abstractions:
|
||||
|
||||
```julia
|
||||
using Flux
|
||||
|
||||
m = Chain(
|
||||
Dense(10, 32, relu),
|
||||
Dense(32, 10), softmax)
|
||||
|
||||
m(rand(10))
|
||||
```
|
||||
|
||||
Mix and match the two:
|
||||
|
||||
```julia
|
||||
using Flux.Tracker
|
||||
x, y = rand(10), rand(5)
|
||||
d = Dense(10, 5)
|
||||
loss = Flux.mse(d(x), y)
|
||||
```
|
||||
|
||||
See the [documentation](http://fluxml.github.io/Flux.jl/stable/) or the [model zoo](https://github.com/FluxML/model-zoo/) for more examples.
|
||||
See the [documentation](http://fluxml.github.io/Flux.jl/stable/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
||||
|
|
Loading…
Reference in New Issue