Merge remote-tracking branch 'upstream/master' into samepad
This commit is contained in:
commit
453ecd1f24
|
@ -1,51 +1,41 @@
|
|||
before_script:
|
||||
- export CI_DISABLE_CURNN_TEST=true
|
||||
|
||||
variables:
|
||||
CI_IMAGE_TAG: 'cuda'
|
||||
|
||||
include:
|
||||
- 'https://raw.githubusercontent.com/JuliaGPU/gitlab-ci/master/templates/v4/common.yml'
|
||||
- 'https://raw.githubusercontent.com/JuliaGPU/gitlab-ci/master/templates/v6.yml'
|
||||
|
||||
.flux:
|
||||
extends: .test
|
||||
script:
|
||||
- julia -e 'using InteractiveUtils;
|
||||
versioninfo()'
|
||||
- mkdir $JULIA_DEPOT_PATH # Pkg3.jl#325
|
||||
- julia --project -e 'using Pkg;
|
||||
Pkg.instantiate();
|
||||
Pkg.build();
|
||||
Pkg.test(; coverage=true);'
|
||||
image: nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04
|
||||
|
||||
test:v1.0:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.0'
|
||||
|
||||
test:v1.1:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.1'
|
||||
julia:1.0:
|
||||
extends:
|
||||
- .julia:1.0
|
||||
- .test
|
||||
tags:
|
||||
- nvidia
|
||||
|
||||
test:v1.2:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.2'
|
||||
julia:1.1:
|
||||
extends:
|
||||
- .julia:1.1
|
||||
- .test
|
||||
tags:
|
||||
- nvidia
|
||||
|
||||
test:v1.3:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.3'
|
||||
julia:1.2:
|
||||
extends:
|
||||
- .julia:1.2
|
||||
- .test
|
||||
tags:
|
||||
- nvidia
|
||||
|
||||
test:v1.0:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.0'
|
||||
|
||||
test:dev:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'dev'
|
||||
julia:1.3:
|
||||
extends:
|
||||
- .julia:1.3
|
||||
- .test
|
||||
tags:
|
||||
- nvidia
|
||||
|
||||
julia:nightly:
|
||||
extends:
|
||||
- .julia:nightly
|
||||
- .test
|
||||
tags:
|
||||
- nvidia
|
||||
allow_failure: true
|
||||
|
|
|
@ -6,7 +6,8 @@ os:
|
|||
# - osx
|
||||
|
||||
julia:
|
||||
- 1.1
|
||||
- 1.2
|
||||
- 1.3
|
||||
- nightly
|
||||
|
||||
matrix:
|
||||
|
@ -16,7 +17,7 @@ matrix:
|
|||
jobs:
|
||||
include:
|
||||
- stage: "Documentation"
|
||||
julia: 1.0
|
||||
julia: 1.2
|
||||
os: linux
|
||||
script:
|
||||
- julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd()));
|
||||
|
|
|
@ -28,10 +28,10 @@ uuid = "9e28174c-4ba2-5203-b857-d8d62c4213ee"
|
|||
version = "0.8.10"
|
||||
|
||||
[[BinaryProvider]]
|
||||
deps = ["Libdl", "Logging", "SHA"]
|
||||
git-tree-sha1 = "c7361ce8a2129f20b0e05a89f7070820cfed6648"
|
||||
deps = ["Libdl", "SHA"]
|
||||
git-tree-sha1 = "5b08ed6036d9d3f0ee6369410b830f8873d4024c"
|
||||
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
|
||||
version = "0.5.6"
|
||||
version = "0.5.8"
|
||||
|
||||
[[CEnum]]
|
||||
git-tree-sha1 = "62847acab40e6855a9b5905ccb99c2b5cf6b3ebb"
|
||||
|
@ -40,9 +40,9 @@ version = "0.2.0"
|
|||
|
||||
[[CSTParser]]
|
||||
deps = ["Tokenize"]
|
||||
git-tree-sha1 = "c69698c3d4a7255bc1b4bc2afc09f59db910243b"
|
||||
git-tree-sha1 = "99dda94f5af21a4565dc2b97edf6a95485f116c3"
|
||||
uuid = "00ebfdb7-1f24-5e51-bd34-a7502290713f"
|
||||
version = "0.6.2"
|
||||
version = "1.0.0"
|
||||
|
||||
[[CUDAapi]]
|
||||
deps = ["Libdl", "Logging"]
|
||||
|
@ -51,16 +51,16 @@ uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
|
|||
version = "1.2.0"
|
||||
|
||||
[[CUDAdrv]]
|
||||
deps = ["CUDAapi", "Libdl", "Printf"]
|
||||
git-tree-sha1 = "9ce99b5732c70e06ed97c042187baed876fb1698"
|
||||
deps = ["CEnum", "Printf"]
|
||||
git-tree-sha1 = "96eabc95ebb83e361311330ffb574a3e2df73251"
|
||||
uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
|
||||
version = "3.1.0"
|
||||
version = "4.0.2"
|
||||
|
||||
[[CUDAnative]]
|
||||
deps = ["Adapt", "CUDAapi", "CUDAdrv", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "Logging", "Printf", "TimerOutputs"]
|
||||
git-tree-sha1 = "52ae1ce10ebfa686e227655c47b19add89308623"
|
||||
deps = ["Adapt", "CEnum", "CUDAapi", "CUDAdrv", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "Printf", "TimerOutputs"]
|
||||
git-tree-sha1 = "dd642afe5fd6633663a8c3d42f3b7638f2210b79"
|
||||
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
|
||||
version = "2.3.1"
|
||||
version = "2.5.3"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["BinaryProvider", "Libdl", "TranscodingStreams"]
|
||||
|
@ -88,9 +88,9 @@ version = "0.2.0"
|
|||
|
||||
[[Compat]]
|
||||
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "84aa74986c5b9b898b0d1acaf3258741ee64754f"
|
||||
git-tree-sha1 = "ed2c4abadf84c53d9e58510b5fc48912c2336fbb"
|
||||
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
|
||||
version = "2.1.0"
|
||||
version = "2.2.0"
|
||||
|
||||
[[Conda]]
|
||||
deps = ["JSON", "VersionParsing"]
|
||||
|
@ -105,23 +105,21 @@ uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
|
|||
version = "4.0.0"
|
||||
|
||||
[[CuArrays]]
|
||||
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "LinearAlgebra", "MacroTools", "NNlib", "Printf", "Random", "Requires", "SparseArrays", "TimerOutputs"]
|
||||
git-tree-sha1 = "45683305171430978c17f496969dc9b6d3094a51"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/JuliaGPU/CuArrays.jl.git"
|
||||
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Printf", "Random", "Requires", "SparseArrays", "TimerOutputs"]
|
||||
git-tree-sha1 = "bc94d6cb335d418088f12641751aab63ff56509d"
|
||||
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
|
||||
version = "1.3.0"
|
||||
version = "1.4.2"
|
||||
|
||||
[[DataAPI]]
|
||||
git-tree-sha1 = "8903f0219d3472543fc4b2f5ebaf675a07f817c0"
|
||||
git-tree-sha1 = "674b67f344687a88310213ddfa8a2b3c76cc4252"
|
||||
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
|
||||
version = "1.0.1"
|
||||
version = "1.1.0"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections"]
|
||||
git-tree-sha1 = "0809951a1774dc724da22d26e4289bbaab77809a"
|
||||
git-tree-sha1 = "1fe8fad5fc84686dcbc674aa255bc867a64f8132"
|
||||
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
version = "0.17.0"
|
||||
version = "0.17.5"
|
||||
|
||||
[[Dates]]
|
||||
deps = ["Printf"]
|
||||
|
@ -155,9 +153,9 @@ version = "1.0.1"
|
|||
|
||||
[[FillArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "SparseArrays"]
|
||||
git-tree-sha1 = "8fba6ddaf66b45dec830233cea0aae43eb1261ad"
|
||||
git-tree-sha1 = "6827a8f73ff12707f209c920d204238a16892b55"
|
||||
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
|
||||
version = "0.6.4"
|
||||
version = "0.8.0"
|
||||
|
||||
[[FixedPointNumbers]]
|
||||
git-tree-sha1 = "d14a6fa5890ea3a7e5dcab6811114f132fec2b4b"
|
||||
|
@ -165,22 +163,22 @@ uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
|
|||
version = "0.6.1"
|
||||
|
||||
[[ForwardDiff]]
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "InteractiveUtils", "LinearAlgebra", "NaNMath", "Random", "SparseArrays", "SpecialFunctions", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "4c4d727f1b7e0092134fabfab6396b8945c1ea5b"
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
|
||||
git-tree-sha1 = "adf88d6da1f0294058f38295becf8807986bb7d0"
|
||||
uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
version = "0.10.3"
|
||||
version = "0.10.5"
|
||||
|
||||
[[GPUArrays]]
|
||||
deps = ["Adapt", "FFTW", "FillArrays", "LinearAlgebra", "Printf", "Random", "Serialization", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "77e27264276fe97a7e7fb928bf8999a145abc018"
|
||||
deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"]
|
||||
git-tree-sha1 = "a0a3b927b1a06e63fb8b91950cc7df340b7d912c"
|
||||
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
|
||||
version = "1.0.3"
|
||||
version = "2.0.0"
|
||||
|
||||
[[IRTools]]
|
||||
deps = ["InteractiveUtils", "MacroTools", "Test"]
|
||||
git-tree-sha1 = "e23faa71b8f54c3fdc99b230b9c2906cafdddca5"
|
||||
git-tree-sha1 = "72421971e60917b8cd7737f9577c4f0f87eab306"
|
||||
uuid = "7869d1d1-7146-5819-86e3-90919afe41df"
|
||||
version = "0.2.3"
|
||||
version = "0.3.0"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["Markdown"]
|
||||
|
@ -200,9 +198,9 @@ version = "0.7.2"
|
|||
|
||||
[[LLVM]]
|
||||
deps = ["CEnum", "Libdl", "Printf", "Unicode"]
|
||||
git-tree-sha1 = "4a05f742837779a00bd8c9a18da6817367c4245d"
|
||||
git-tree-sha1 = "74fe444b8b6d1ac01d639b2f9eaf395bcc2e24fc"
|
||||
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
|
||||
version = "1.3.0"
|
||||
version = "1.3.2"
|
||||
|
||||
[[LibGit2]]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
@ -234,9 +232,10 @@ uuid = "e89f7d12-3494-54d1-8411-f7d8b9ae1f27"
|
|||
version = "0.5.0"
|
||||
|
||||
[[Missings]]
|
||||
git-tree-sha1 = "29858ce6c8ae629cf2d733bffa329619a1c843d0"
|
||||
deps = ["DataAPI"]
|
||||
git-tree-sha1 = "de0a5ce9e5289f27df672ffabef4d1e5861247d5"
|
||||
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
|
||||
version = "0.4.2"
|
||||
version = "0.4.3"
|
||||
|
||||
[[Mmap]]
|
||||
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
||||
|
@ -261,12 +260,12 @@ version = "1.1.0"
|
|||
|
||||
[[Parsers]]
|
||||
deps = ["Dates", "Test"]
|
||||
git-tree-sha1 = "ef0af6c8601db18c282d092ccbd2f01f3f0cd70b"
|
||||
git-tree-sha1 = "c56ecb484f286639f161e712b8311f5ab77e8d32"
|
||||
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
|
||||
version = "0.3.7"
|
||||
version = "0.3.8"
|
||||
|
||||
[[Pkg]]
|
||||
deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
|
||||
|
||||
[[Printf]]
|
||||
|
@ -328,9 +327,9 @@ version = "0.8.0"
|
|||
|
||||
[[StaticArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "Statistics"]
|
||||
git-tree-sha1 = "db23bbf50064c582b6f2b9b043c8e7e98ea8c0c6"
|
||||
git-tree-sha1 = "1e9c5d89cba8047d518f1ffef432906ef1a3e8bd"
|
||||
uuid = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
version = "0.11.0"
|
||||
version = "0.12.0"
|
||||
|
||||
[[Statistics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
|
@ -390,16 +389,12 @@ version = "0.8.3"
|
|||
|
||||
[[Zygote]]
|
||||
deps = ["DiffRules", "FFTW", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
|
||||
git-tree-sha1 = "38241b40ebd8748bcacad5e6c7ba3ab3cc7a15c9"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/Zygote.jl.git"
|
||||
git-tree-sha1 = "b2e42a21dc3d1ecd3cbe8c83a454ca56fbf423c4"
|
||||
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
version = "0.3.4"
|
||||
version = "0.4.0"
|
||||
|
||||
[[ZygoteRules]]
|
||||
deps = ["MacroTools"]
|
||||
git-tree-sha1 = "c4c29b30b8ff3be13d4244e78be7df2a42bc54d0"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/ZygoteRules.jl.git"
|
||||
git-tree-sha1 = "b3b4882cc9accf6731a08cc39543fbc6b669dca8"
|
||||
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
|
||||
version = "0.2.0"
|
||||
|
|
|
@ -5,7 +5,7 @@ version = "0.9.0"
|
|||
[deps]
|
||||
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
|
||||
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
|
||||
CUDAapi = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
|
||||
CUDAdrv = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
|
||||
CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
|
||||
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
|
||||
|
@ -23,13 +23,12 @@ StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
|||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
ZygoteRules = "700de1a5-db45-46bc-99cf-38207098b444"
|
||||
|
||||
[compat]
|
||||
CUDAapi = "1.1"
|
||||
CuArrays = "1.2"
|
||||
CUDAdrv = "4.0.1"
|
||||
CuArrays = "1.4.2"
|
||||
NNlib = "0.6"
|
||||
Zygote = "0.3"
|
||||
Zygote = "0.4"
|
||||
julia = "1"
|
||||
|
||||
[extras]
|
||||
|
|
|
@ -38,7 +38,7 @@ model = Chain(
|
|||
|
||||
loss(x, y) = crossentropy(model(x), y)
|
||||
|
||||
Flux.train!(loss, data, ADAM(...))
|
||||
Flux.train!(loss, params(model), data, ADAM(...))
|
||||
```
|
||||
|
||||
Yet you can easily strip away the layers, and directly write the mathematics for your problem. Flux will seamlessly take gradients of any Julia code, so your model looks just like the paper.
|
||||
|
|
|
@ -113,6 +113,6 @@ You can even store optimiser state alongside the model, to resume training
|
|||
exactly where you left off.
|
||||
|
||||
```julia
|
||||
opt = ADAM(params(model))
|
||||
opt = ADAM()
|
||||
@save "model-$(now()).bson" model opt
|
||||
```
|
||||
|
|
|
@ -58,3 +58,83 @@ AMSGrad
|
|||
NADAM
|
||||
ADAMW
|
||||
```
|
||||
|
||||
## Optimiser Interface
|
||||
|
||||
Flux's optimsers are built around a `struct` that holds all the optimiser parameters along with a definition of how to apply the update rule associated with it. We do this via the `apply!` function which takes the optimiser as the first argument followed by the parameter and its corresponding gradient.
|
||||
|
||||
In this manner Flux also allows one to create custom optimisers to be used seamlessly. Let's work this with a simple example.
|
||||
|
||||
```julia
|
||||
mutable struct Momentum
|
||||
eta
|
||||
rho
|
||||
velocity
|
||||
end
|
||||
|
||||
Momentum(eta::Real, rho::Real) = Momentum(eta, rho, IdDict())
|
||||
```
|
||||
|
||||
The `Momentum` type will act as our optimiser in this case. Notice that we have added all the parameters as fields, along with the velocity which we will use as our state dictionary. Each parameter in our models will get an entry in there. We can now define the rule applied when this optimiser is invoked.
|
||||
|
||||
```julia
|
||||
function apply!(o::Momentum, x, Δ)
|
||||
η, ρ = o.eta, o.rho
|
||||
v = get!(o.velocity, x, zero(x))::typeof(x)
|
||||
@. v = ρ * v - η * Δ
|
||||
@. Δ = -v
|
||||
end
|
||||
```
|
||||
|
||||
This is the basic definition of a Momentum update rule given by:
|
||||
|
||||
```math
|
||||
v = ρ * v - η * Δ
|
||||
w = w - v
|
||||
```
|
||||
|
||||
The `apply!` defines the update rules for an optimiser `opt`, given the parameters and gradients. It returns the updated gradients. Here, every parameter `x` is retrieved from the running state `v` and subsequently updates the state of the optimiser.
|
||||
|
||||
Flux internally calls on this function via the `update!` function. It shares the API with `apply!` but ensures that multiple parameters are handled gracefully.
|
||||
|
||||
## Composing Optimisers
|
||||
|
||||
Flux defines a special kind of optimiser called simply as `Optimiser` which takes in a arbitrary optimisers as input. Its behaviour is similar to the usual optimisers, but differs in that it acts by calling the optimisers listed in it sequentially. Each optimiser produces a modified gradient
|
||||
that will be fed into the next, and the resultant update will be applied to the parameter as usual. A classic use case is where adding decays is desirable. Flux defines some basic decays including `ExpDecay`, `InvDecay` etc.
|
||||
|
||||
```julia
|
||||
opt = Optimiser(ExpDecay(0.001, 0.1, 1000, 1e-4), Descent())
|
||||
```
|
||||
|
||||
Here we apply exponential decay to the `Descent` optimser. The defaults of `ExpDecay` say that its learning rate will be decayed every 1000 steps.
|
||||
It is then applied like any optimser.
|
||||
|
||||
```julia
|
||||
w = randn(10, 10)
|
||||
w1 = randn(10,10)
|
||||
ps = Params([w, w1])
|
||||
|
||||
loss(x) = Flux.mse(w * x, w1 * x)
|
||||
|
||||
loss(rand(10)) # around 9
|
||||
|
||||
for t = 1:10^5
|
||||
θ = Params([w, w1])
|
||||
θ̄ = gradient(() -> loss(rand(10)), θ)
|
||||
Flux.Optimise.update!(opt, θ, θ̄)
|
||||
end
|
||||
|
||||
loss(rand(10)) # around 0.9
|
||||
```
|
||||
|
||||
In this manner it is possible to compose optimisers for some added flexibility.
|
||||
|
||||
## Decays
|
||||
|
||||
Similar to optimisers, Flux also defines some simple decays that can be used in conjunction with other optimisers, or standalone.
|
||||
|
||||
```@docs
|
||||
ExpDecay
|
||||
InvDecay
|
||||
WeightDecay
|
||||
```
|
||||
|
|
46
src/Flux.jl
46
src/Flux.jl
|
@ -21,19 +21,9 @@ export SGD, Descent, ADAM, Momentum, Nesterov, RMSProp,
|
|||
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay
|
||||
|
||||
|
||||
allow_cuda() = parse(Bool, get(ENV, "FLUX_USE_CUDA", "true"))
|
||||
const consider_cuda = allow_cuda()
|
||||
|
||||
using CUDAapi
|
||||
const use_cuda = consider_cuda && has_cuda()
|
||||
if use_cuda
|
||||
try
|
||||
using CuArrays
|
||||
catch
|
||||
@error "CUDA is installed, but CuArrays.jl fails to load. Please fix the issue, or load Flux with FLUX_USE_CUDA=false."
|
||||
rethrow()
|
||||
end
|
||||
end
|
||||
ENV["CUDA_INIT_SILENT"] = true
|
||||
using CUDAdrv, CuArrays
|
||||
const use_cuda = Ref(false)
|
||||
|
||||
include("utils.jl")
|
||||
include("onehot.jl")
|
||||
|
@ -49,21 +39,23 @@ include("data/Data.jl")
|
|||
|
||||
include("deprecations.jl")
|
||||
|
||||
if use_cuda
|
||||
include("cuda/cuda.jl")
|
||||
end
|
||||
|
||||
function __init__()
|
||||
# check if the GPU usage conditions that are baked in the precompilation image
|
||||
# match the current situation, and force a recompilation if not.
|
||||
if (allow_cuda() != consider_cuda) || (consider_cuda && has_cuda() != use_cuda)
|
||||
cachefile = if VERSION >= v"1.3-"
|
||||
Base.compilecache_path(Base.PkgId(Flux))
|
||||
else
|
||||
abspath(DEPOT_PATH[1], Base.cache_file_entry(Base.PkgId(Flux)))
|
||||
end
|
||||
rm(cachefile)
|
||||
error("Your set-up changed, and Flux.jl needs to be reconfigured. Please load the package again.")
|
||||
if !CUDAdrv.functional()
|
||||
@warn "CUDA available, but CUDAdrv.jl failed to load"
|
||||
elseif length(devices()) == 0
|
||||
@warn "CUDA available, but no GPU detected"
|
||||
elseif !CuArrays.functional()
|
||||
@warn "CUDA GPU available, but CuArrays.jl failed to load"
|
||||
else
|
||||
use_cuda[] = true
|
||||
|
||||
# FIXME: this functionality should be conditional at run time by checking `use_cuda`
|
||||
# (or even better, get moved to CuArrays.jl as much as possible)
|
||||
if CuArrays.has_cudnn()
|
||||
include(joinpath(@__DIR__, "cuda/cuda.jl"))
|
||||
else
|
||||
@warn "CUDA GPU available, but CuArrays.jl did not find libcudnn. Some functionality will not be available."
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -2,12 +2,8 @@ module CUDA
|
|||
|
||||
using ..CuArrays
|
||||
|
||||
if CuArrays.libcudnn !== nothing # TODO: use CuArrays.has_cudnn()
|
||||
using CuArrays: CUDNN
|
||||
include("curnn.jl")
|
||||
include("cudnn.jl")
|
||||
else
|
||||
@warn "CUDNN is not installed, some functionality will not be available."
|
||||
end
|
||||
using CuArrays: CUDNN
|
||||
include("curnn.jl")
|
||||
include("cudnn.jl")
|
||||
|
||||
end
|
||||
|
|
|
@ -73,13 +73,7 @@ end
|
|||
|
||||
cpu(m) = fmap(x -> adapt(Array, x), m)
|
||||
|
||||
const gpu_adaptor = if use_cuda
|
||||
CuArrays.cu
|
||||
else
|
||||
identity
|
||||
end
|
||||
|
||||
gpu(x) = fmap(gpu_adaptor, x)
|
||||
gpu(x) = use_cuda[] ? fmap(CuArrays.cu, x) : x
|
||||
|
||||
# Precision
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
gate(h, n) = (1:h) .+ h*(n-1)
|
||||
gate(x::AbstractVector, h, n) = x[gate(h,n)]
|
||||
gate(x::AbstractVector, h, n) = @view x[gate(h,n)]
|
||||
gate(x::AbstractMatrix, h, n) = x[gate(h,n),:]
|
||||
|
||||
# Stateful recurrence
|
||||
|
|
|
@ -4,10 +4,20 @@ using NNlib: logsoftmax, logσ
|
|||
|
||||
mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
|
||||
|
||||
function crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
||||
-sum(y .* log.(ŷ) .* weight) * 1 // size(y, 2)
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
|
||||
return -sum(y .* log.(ŷ)) * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
|
||||
return -sum(y .* log.(ŷ)) .* weight * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
|
||||
return -sum(y .* log.(ŷ) .* weight) * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(ŷ, y, weight)
|
||||
|
||||
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
||||
return -sum(y .* logsoftmax(logŷ) .* weight) * 1 // size(y, 2)
|
||||
end
|
||||
|
@ -42,7 +52,25 @@ logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ)
|
|||
"""
|
||||
normalise(x::AbstractArray; dims=1)
|
||||
|
||||
Normalises x to mean 0 and standard deviation 1, across the dimensions given by dims. Defaults to normalising over columns.
|
||||
Normalises `x` to mean 0 and standard deviation 1, across the dimensions given by `dims`. Defaults to normalising over columns.
|
||||
|
||||
julia> a = reshape(collect(1:9), 3, 3)
|
||||
3×3 Array{Int64,2}:
|
||||
1 4 7
|
||||
2 5 8
|
||||
3 6 9
|
||||
|
||||
julia> normalise(a)
|
||||
3×3 Array{Float64,2}:
|
||||
-1.22474 -1.22474 -1.22474
|
||||
0.0 0.0 0.0
|
||||
1.22474 1.22474 1.22474
|
||||
|
||||
julia> normalise(a, dims=2)
|
||||
3×3 Array{Float64,2}:
|
||||
-1.22474 0.0 1.22474
|
||||
-1.22474 0.0 1.22474
|
||||
-1.22474 0.0 1.22474
|
||||
"""
|
||||
function normalise(x::AbstractArray; dims=1)
|
||||
μ′ = mean(x, dims = dims)
|
||||
|
|
|
@ -37,12 +37,10 @@ import Adapt: adapt, adapt_structure
|
|||
|
||||
adapt_structure(T, xs::OneHotMatrix) = OneHotMatrix(xs.height, adapt(T, xs.data))
|
||||
|
||||
if use_cuda
|
||||
import .CuArrays: CuArray, cudaconvert
|
||||
import Base.Broadcast: BroadcastStyle, ArrayStyle
|
||||
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = ArrayStyle{CuArray}()
|
||||
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
|
||||
end
|
||||
import .CuArrays: CuArray, cudaconvert
|
||||
import Base.Broadcast: BroadcastStyle, ArrayStyle
|
||||
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = ArrayStyle{CuArray}()
|
||||
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
|
||||
|
||||
"""
|
||||
onehot(l, labels[, unk])
|
||||
|
|
|
@ -7,10 +7,28 @@ const ϵ = 1e-8
|
|||
# TODO: should use weak refs
|
||||
|
||||
"""
|
||||
Descent(η)
|
||||
Descent(η)
|
||||
|
||||
Classic gradient descent optimiser with learning rate `η`.
|
||||
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
|
||||
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): The amount by which the gradients are discounted before updating the weights. Defaults to `0.1`.
|
||||
|
||||
## Example
|
||||
```julia-repl
|
||||
opt = Descent() # uses default η (0.1)
|
||||
|
||||
opt = Descent(0.3) # use provided η
|
||||
|
||||
ps = params(model)
|
||||
|
||||
gs = gradient(ps) do
|
||||
loss(x, y)
|
||||
end
|
||||
|
||||
Flux.Optimise.update!(opt, ps, gs)
|
||||
```
|
||||
"""
|
||||
mutable struct Descent
|
||||
eta::Float64
|
||||
|
@ -23,9 +41,20 @@ function apply!(o::Descent, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
Momentum(η = 0.01; ρ = 0.9)
|
||||
Momentum(η, ρ)
|
||||
|
||||
Gradient descent with learning rate `η` and momentum `ρ`.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (`η`): Amount by which gradients are discounted before updating the weights. Defaults to `0.01`.
|
||||
- Momentum (`ρ`): Parameter that accelerates descent in the relevant direction and dampens oscillations. Defaults to `0.9`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = Momentum() # uses defaults of η = 0.01 and ρ = 0.9
|
||||
|
||||
opt = Momentum(0.01, 0.99)
|
||||
```
|
||||
"""
|
||||
mutable struct Momentum
|
||||
eta::Float64
|
||||
|
@ -43,9 +72,20 @@ function apply!(o::Momentum, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
Nesterov(eta, ρ = 0.9)
|
||||
Nesterov(η, ρ)
|
||||
|
||||
Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Amount by which the gradients are dicsounted berfore updating the weights. Defaults to `0.001`.
|
||||
- Nesterov Momentum (ρ): Paramters controlling the amount of nesterov momentum to be applied. Defaults to `0.9`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = Nesterov() # uses defaults η = 0.001 and ρ = 0.9
|
||||
|
||||
opt = Nesterov(0.003, 0.95)
|
||||
```
|
||||
"""
|
||||
mutable struct Nesterov
|
||||
eta::Float64
|
||||
|
@ -64,11 +104,23 @@ function apply!(o::Nesterov, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
RMSProp(η = 0.001, ρ = 0.9)
|
||||
RMSProp(η, ρ)
|
||||
|
||||
Implements the RMSProp algortihm. Often a good choice for recurrent networks. Paramters other than learning rate generally don't need tuning.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`.
|
||||
- Rho (ρ): Defaults to `0.9`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = RMSProp() # uses default η = 0.001 and ρ = 0.9
|
||||
|
||||
opt = RMSProp(0.002, 0.95)
|
||||
```
|
||||
|
||||
## References
|
||||
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
||||
choice for recurrent networks.
|
||||
"""
|
||||
mutable struct RMSProp
|
||||
eta::Float64
|
||||
|
@ -86,8 +138,22 @@ function apply!(o::RMSProp, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
ADAM(η = 0.001, β = (0.9, 0.999))
|
||||
ADAM(η, β::Tuple)
|
||||
|
||||
Implements the ADAM optimiser.
|
||||
|
||||
## Paramters
|
||||
- Learning Rate (`η`): Defaults to `0.001`.
|
||||
- Beta (`β::Tuple`): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
|
||||
|
||||
## Examples
|
||||
|
||||
```julia
|
||||
opt = ADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
|
||||
|
||||
opt = ADAM(0.001, (0.9, 0.8))
|
||||
```
|
||||
## References
|
||||
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
|
||||
"""
|
||||
mutable struct ADAM
|
||||
|
@ -109,8 +175,23 @@ function apply!(o::ADAM, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
RADAM(η = 0.001, β = (0.9, 0.999))
|
||||
RADAM(η, β::Tuple)
|
||||
|
||||
Implements the rectified ADAM optimizer.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`
|
||||
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
|
||||
|
||||
## Examples
|
||||
|
||||
```julia
|
||||
opt = RADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
|
||||
|
||||
opt = RADAM(0.001, (0.9, 0.8))
|
||||
```
|
||||
|
||||
## References
|
||||
[RADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimiser (Rectified ADAM).
|
||||
"""
|
||||
mutable struct RADAM
|
||||
|
@ -139,10 +220,22 @@ function apply!(o::RADAM, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08)
|
||||
AdaMax(η, β::Tuple)
|
||||
|
||||
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on
|
||||
the ∞-norm.
|
||||
Variant of ADAM based on ∞-norm.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`
|
||||
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = AdaMax() # uses default η and β
|
||||
|
||||
opt = AdaMax(0.001, (0.9, 0.995))
|
||||
```
|
||||
## References
|
||||
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser.
|
||||
"""
|
||||
mutable struct AdaMax
|
||||
eta::Float64
|
||||
|
@ -163,8 +256,21 @@ function apply!(o::AdaMax, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
ADAGrad(η = 0.1; ϵ = 1e-8)
|
||||
ADAGrad(η)
|
||||
|
||||
Implements AdaGrad. It has parameter specific learning rates based on how frequently it is updated.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.1`
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = ADAGrad() # uses default η = 0.1
|
||||
|
||||
opt = ADAGrad(0.001)
|
||||
```
|
||||
|
||||
## References
|
||||
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
|
||||
Parameters don't need tuning.
|
||||
"""
|
||||
|
@ -183,10 +289,21 @@ function apply!(o::ADAGrad, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
ADADelta(ρ = 0.9, ϵ = 1e-8)
|
||||
ADADelta(ρ)
|
||||
|
||||
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
||||
tuning.
|
||||
Version of ADAGrad that adapts learning rate based on a window of past gradient updates. Parameters don't need tuning.
|
||||
|
||||
## Parameters
|
||||
- Rho (ρ): Factor by which gradient is decayed at each time step. Defaults to `0.9`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = ADADelta() # uses default ρ = 0.9
|
||||
opt = ADADelta(0.89)
|
||||
```
|
||||
|
||||
## References
|
||||
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser.
|
||||
"""
|
||||
mutable struct ADADelta
|
||||
rho::Float64
|
||||
|
@ -205,10 +322,22 @@ function apply!(o::ADADelta, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
AMSGrad(η = 0.001, β = (0.9, 0.999))
|
||||
AMSGrad(η, β::Tuple)
|
||||
|
||||
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
|
||||
tuning.
|
||||
Implements AMSGrad version of the ADAM optimiser. Parameters don't need tuning.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`.
|
||||
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = AMSGrad() # uses default η and β
|
||||
opt = AMSGrad(0.001, (0.89, 0.995))
|
||||
```
|
||||
|
||||
## References
|
||||
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser.
|
||||
"""
|
||||
mutable struct AMSGrad
|
||||
eta::Float64
|
||||
|
@ -228,10 +357,22 @@ function apply!(o::AMSGrad, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
NADAM(η = 0.001, β = (0.9, 0.999))
|
||||
NADAM(η, β::Tuple)
|
||||
|
||||
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser. Parameters don't need
|
||||
tuning.
|
||||
Nesterov variant of ADAM. Parameters don't need tuning.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`.
|
||||
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = NADAM() # uses default η and β
|
||||
opt = NADAM(0.002, (0.89, 0.995))
|
||||
```
|
||||
|
||||
## References
|
||||
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser.
|
||||
"""
|
||||
mutable struct NADAM
|
||||
eta::Float64
|
||||
|
@ -252,9 +393,23 @@ function apply!(o::NADAM, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
ADAMW((η = 0.001, β = (0.9, 0.999), decay = 0)
|
||||
ADAMW(η, β::Tuple, decay)
|
||||
|
||||
[ADAMW](https://arxiv.org/abs/1711.05101) fixing weight decay regularization in Adam.
|
||||
Variant of ADAM defined by fixing weight decay regularization.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (η): Defaults to `0.001`.
|
||||
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to (0.9, 0.999).
|
||||
- decay: Decay applied to weights during optimisation. Defaults to 0.
|
||||
|
||||
## Examples
|
||||
```julia
|
||||
opt = ADAMW() # uses default η, β and decay
|
||||
opt = ADAMW(0.001, (0.89, 0.995), 0.1)
|
||||
```
|
||||
|
||||
## References
|
||||
[ADAMW](https://arxiv.org/abs/1711.05101)
|
||||
"""
|
||||
ADAMW(η = 0.001, β = (0.9, 0.999), decay = 0) =
|
||||
Optimiser(ADAM(η, β), WeightDecay(decay))
|
||||
|
@ -287,9 +442,14 @@ function apply!(o::Optimiser, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
`InvDecay(γ)`
|
||||
InvDecay(γ)
|
||||
|
||||
Apply inverse time decay to an optimiser
|
||||
Applies inverse time decay to an optimiser
|
||||
|
||||
## Parameters
|
||||
- gamma (γ): Defaults to `0.001`
|
||||
|
||||
## Example
|
||||
```julia
|
||||
Optimiser(InvDecay(..), Opt(..))
|
||||
```
|
||||
|
@ -310,13 +470,22 @@ function apply!(o::InvDecay, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
`ExpDecay(eta, decay, decay_step, clip)`
|
||||
ExpDecay(eta, decay, decay_step, clip)
|
||||
|
||||
Schedule the learning rate `eta` by `decay` every `decay_step` till a minimum of `clip`.
|
||||
Discount the learning rate `eta` by `decay` every `decay_step` till a minimum of `clip`.
|
||||
|
||||
## Parameters
|
||||
- Learning Rate (eta): Defaults to `0.001`.
|
||||
- decay: Factor by which the learning rate is discounted. Defaults to `0.1`.
|
||||
- decay_step: Schedules decay operations by setting number of steps between two decay operations. Defaults to `1000`.
|
||||
- clip: Minimum value of learning rate. Defaults to `1e-4`.
|
||||
|
||||
## Example
|
||||
To apply exponential decay to an optimiser:
|
||||
```julia
|
||||
Optimiser(ExpDecay(..), Opt(..))
|
||||
|
||||
opt = Optimiser(ExpDecay(), ADAM())
|
||||
```
|
||||
"""
|
||||
mutable struct ExpDecay
|
||||
|
@ -340,9 +509,12 @@ function apply!(o::ExpDecay, x, Δ)
|
|||
end
|
||||
|
||||
"""
|
||||
`WeightDecay(wd)`
|
||||
WeightDecay(wd)
|
||||
|
||||
Decay the weight parameter by `wd`
|
||||
Decays the weight by `wd`
|
||||
|
||||
## Parameters
|
||||
- weight decay (wd): 0
|
||||
"""
|
||||
mutable struct WeightDecay
|
||||
wd::Real
|
||||
|
|
|
@ -28,6 +28,8 @@ cm = gpu(m)
|
|||
x = [1,2,3]
|
||||
cx = gpu(x)
|
||||
@test Flux.crossentropy(x,x) ≈ Flux.crossentropy(cx,cx)
|
||||
@test Flux.crossentropy(x,x, weight=1.0) ≈ Flux.crossentropy(cx,cx, weight=1.0)
|
||||
@test Flux.crossentropy(x,x, weight=[1.0;2.0;3.0]) ≈ Flux.crossentropy(cx,cx, weight=cu([1.0;2.0;3.0]))
|
||||
|
||||
xs = rand(5, 5)
|
||||
ys = Flux.onehotbatch(1:5,1:5)
|
||||
|
@ -51,8 +53,10 @@ end
|
|||
@test y[3,:] isa CuArray
|
||||
end
|
||||
|
||||
if CuArrays.libcudnn != nothing
|
||||
if CuArrays.has_cudnn()
|
||||
@info "Testing Flux/CUDNN"
|
||||
include("cudnn.jl")
|
||||
include("curnn.jl")
|
||||
else
|
||||
@warn "CUDNN unavailable, not testing GPU DNN support"
|
||||
end
|
||||
|
|
|
@ -19,7 +19,7 @@ include("layers/normalisation.jl")
|
|||
include("layers/stateless.jl")
|
||||
include("layers/conv.jl")
|
||||
|
||||
if isdefined(Flux, :CUDA)
|
||||
if Flux.use_cuda[]
|
||||
include("cuda/cuda.jl")
|
||||
else
|
||||
@warn "CUDA unavailable, not testing GPU support"
|
||||
|
|
Loading…
Reference in New Issue