Add updates for julia0.7
This commit is contained in:
parent
3b448ce1ac
commit
4bd13c448f
@ -78,9 +78,9 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
|
||||
@check ccall((:cudnnBatchNormalizationForwardTraining, libcudnn), cudnnStatus_t,
|
||||
(cudnnHandle_t,cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T}),
|
||||
libcudnn_handle[], BATCHNORM_SPATIAL,
|
||||
@ -99,9 +99,9 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
|
||||
@check ccall((:cudnnBatchNormalizationForwardInference, libcudnn), cudnnStatus_t,
|
||||
(Ptr{cudnnHandle_t},cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T},
|
||||
Ptr{T}, Ptr{T},
|
||||
Cdouble),
|
||||
libcudnn_handle[], BATCHNORM_SPATIAL,
|
||||
@ -153,10 +153,10 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
|
||||
(cudnnHandle_t,cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T}, Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T}),
|
||||
libcudnn_handle[], BATCHNORM_SPATIAL,
|
||||
Ref(T(alpha)), Ref(T(beta)),
|
||||
@ -169,8 +169,8 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
|
||||
else
|
||||
ivar = 1 ./ sqrt.(reshape(running_var, _wsize(x)) .+ eps)
|
||||
dx .= dy .* reshape(g, _wsize(x)) .* ivar
|
||||
dg .= squeeze(sum(dy .* (x .- reshape(running_mean, _wsize(x))) .* ivar, _reddims(dy)), (1,2,4))
|
||||
db .= squeeze(sum(dy, _reddims(dy)), (1,2,4))
|
||||
dg .= squeeze(sum(dy .* (x .- reshape(running_mean, _wsize(x))) .* ivar, _reddims(dy)), dims = (1,2,4))
|
||||
db .= squeeze(sum(dy, _reddims(dy)), dims = (1,2,4))
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -36,14 +36,14 @@ mutable struct RNNDesc{T}
|
||||
params::CuVector{T}
|
||||
weights::NTuple{2,CuMatrix{T}}
|
||||
bias::CuVector{T}
|
||||
ptr::Ptr{Void}
|
||||
ptr::Ptr{Nothing}
|
||||
end
|
||||
|
||||
Base.unsafe_convert(::Type{Ptr{Void}}, d::RNNDesc) = d.ptr
|
||||
Base.unsafe_convert(::Type{Ptr{Nothing}}, d::RNNDesc) = d.ptr
|
||||
|
||||
function rnnParamSize(T, r, input)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Csize_t},Cint),
|
||||
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Ptr{Nothing},Ptr{Csize_t},Cint),
|
||||
libcudnn_handle[], r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T))
|
||||
return Int(size[])÷sizeof(T)
|
||||
end
|
||||
@ -53,26 +53,26 @@ ngates(r::RNNDesc) = ngates(r.mode)
|
||||
|
||||
function RNNDesc{T}(mode::Int, input::Int, hidden::Int; layers = 1) where T
|
||||
d = [C_NULL]
|
||||
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Void}},),d)
|
||||
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Nothing}},),d)
|
||||
|
||||
dropoutDesc = DropoutDesc(0)
|
||||
inputMode = LINEAR_INPUT
|
||||
direction = UNIDIRECTIONAL
|
||||
algo = RNN_ALGO_STANDARD
|
||||
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Cint,Ptr{Void},Cint,Cint,Cint,Cint,Cint),
|
||||
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Cint,Ptr{Nothing},Cint,Cint,Cint,Cint,Cint),
|
||||
libcudnn_handle[],d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T))
|
||||
|
||||
w = cuzeros(T, rnnParamSize(T, d[], input))
|
||||
# TODO: avoid reserve allocation here
|
||||
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates(mode))..., d[])
|
||||
finalizer(rd, x ->
|
||||
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
|
||||
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x))
|
||||
return rd
|
||||
end
|
||||
|
||||
function rnnWorkspaceSize(r::RNNDesc, seqlen, xdesc)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Ptr{Void}},Ptr{Csize_t}),
|
||||
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Ptr{Ptr{Nothing}},Ptr{Csize_t}),
|
||||
libcudnn_handle[], r, seqlen, xdesc, size)
|
||||
return Int(size[])
|
||||
end
|
||||
@ -89,7 +89,7 @@ getworkspace(r::RNNDesc, seqlen, xdesc) =
|
||||
|
||||
function rnnTrainingReserveSize(r::RNNDesc, seqlen, xdesc)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Void}, Ptr{Void}, Cint, Ptr{Ptr{Void}}, Ptr{Csize_t}),
|
||||
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Nothing}, Ptr{Nothing}, Cint, Ptr{Ptr{Nothing}}, Ptr{Csize_t}),
|
||||
libcudnn_handle[], r, seqlen, xdesc, size)
|
||||
return Int(size[])
|
||||
end
|
||||
@ -98,19 +98,19 @@ function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd
|
||||
workspace, reserve=nothing) where T
|
||||
if reserve == nothing
|
||||
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
|
||||
(Ptr{Void}, Ptr{Void}, Cint,
|
||||
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Csize_t),
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t),
|
||||
libcudnn_handle[], rnn, seqlen,
|
||||
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
||||
workspace, length(workspace))
|
||||
else
|
||||
@check ccall((:cudnnRNNForwardTraining, libcudnn), cudnnStatus_t,
|
||||
(Ptr{Void}, Ptr{Void}, Cint,
|
||||
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Csize_t, Ptr{Void}, Csize_t),
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
||||
libcudnn_handle[], rnn, seqlen,
|
||||
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
||||
workspace, length(workspace), reserve, length(reserve))
|
||||
@ -119,7 +119,7 @@ end
|
||||
|
||||
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))]
|
||||
|
||||
hDesc(h::Void) = C_NULL, C_NULL
|
||||
hDesc(h::Nothing) = C_NULL, C_NULL
|
||||
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing))
|
||||
function hDesc(h::CuArray)
|
||||
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h
|
||||
@ -166,18 +166,18 @@ forwardTrain(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing) where T
|
||||
function cudnnRNNBackwardData(rnn::RNNDesc{T}, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
|
||||
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, rs) where T
|
||||
@check ccall((:cudnnRNNBackwardData,libcudnn),cudnnStatus_t,
|
||||
(Ptr{Void}, Ptr{Void}, Cint,
|
||||
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void},
|
||||
Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Csize_t, Ptr{Void}, Csize_t),
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing},
|
||||
Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
||||
libcudnn_handle[], rnn, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
|
||||
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, length(ws), rs, length(rs))
|
||||
end
|
||||
|
||||
function backwardData(rnn::RNNDesc{T}, y, dy_, dho, dco, h, c, reserve) where T
|
||||
# Same as above, any more efficient way?
|
||||
dy = dy_ isa Integer ? zeros(y) : dy_
|
||||
dy = dy_ isa Integer ? zero(y) : dy_
|
||||
yd = xDesc(y)
|
||||
dx = y isa AbstractVector ? similar(dy, rnn.input) : similar(dy, rnn.input, size(dy, 2))
|
||||
dh = similar(h)
|
||||
@ -196,19 +196,19 @@ backwardData(rnn, y, dy, dho, hx, reserve) =
|
||||
function cudnnRNNBackwardWeights(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, yd, y, dwd, dw,
|
||||
workspace, reserve) where T
|
||||
@check ccall((:cudnnRNNBackwardWeights,libcudnn), cudnnStatus_t,
|
||||
(Ptr{Void}, Ptr{Void}, Cint, # handle, rnnDesc, seqLength
|
||||
Ptr{Ptr{Void}}, Ptr{T}, #x
|
||||
Ptr{Void}, Ptr{T}, #hx
|
||||
Ptr{Ptr{Void}}, Ptr{T}, #y
|
||||
Ptr{Void}, Csize_t, #ws
|
||||
Ptr{Void}, Ptr{T}, #dw
|
||||
Ptr{Void}, Csize_t), #rs
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint, # handle, rnnDesc, seqLength
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, #x
|
||||
Ptr{Nothing}, Ptr{T}, #hx
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, #y
|
||||
Ptr{Nothing}, Csize_t, #ws
|
||||
Ptr{Nothing}, Ptr{T}, #dw
|
||||
Ptr{Nothing}, Csize_t), #rs
|
||||
libcudnn_handle[], rnn, seqlen, xd, x, hd, h, yd, y,
|
||||
workspace, length(workspace), dwd, dw, reserve, length(reserve))
|
||||
end
|
||||
|
||||
function backwardWeights(rnn::RNNDesc{T}, x, h, y, reserve) where T
|
||||
dw = zeros(rnn.params)
|
||||
dw = zero(rnn.params)
|
||||
cudnnRNNBackwardWeights(rnn, 1,
|
||||
xDesc(x), x, hDesc(h)..., xDesc(y), y,
|
||||
FilterDesc(T, (1, 1, length(dw))), dw,
|
||||
|
@ -141,8 +141,8 @@ function (BN::BatchNorm)(x)
|
||||
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, BN.momentum))
|
||||
BN.μ = ((1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...)))
|
||||
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* squeeze(data(σ²), (axes...)) .* m ./ (m - 1))
|
||||
BN.μ = ((1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), dims = (axes...)))
|
||||
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* squeeze(data(σ²), dims = (axes...)) .* m ./ (m - 1))
|
||||
end
|
||||
|
||||
ϵ = convert(T, BN.ϵ)
|
||||
|
Loading…
Reference in New Issue
Block a user