Add updates for julia0.7

This commit is contained in:
Avik Pal 2018-08-11 15:23:40 +05:30
parent 3b448ce1ac
commit 4bd13c448f
3 changed files with 45 additions and 45 deletions

View File

@ -78,9 +78,9 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
@check ccall((:cudnnBatchNormalizationForwardTraining, libcudnn), cudnnStatus_t,
(cudnnHandle_t,cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T}),
libcudnn_handle[], BATCHNORM_SPATIAL,
@ -99,9 +99,9 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
@check ccall((:cudnnBatchNormalizationForwardInference, libcudnn), cudnnStatus_t,
(Ptr{cudnnHandle_t},cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T},
Ptr{T}, Ptr{T},
Cdouble),
libcudnn_handle[], BATCHNORM_SPATIAL,
@ -153,10 +153,10 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
(cudnnHandle_t,cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{T}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T}, Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T}),
libcudnn_handle[], BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
@ -169,8 +169,8 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
else
ivar = 1 ./ sqrt.(reshape(running_var, _wsize(x)) .+ eps)
dx .= dy .* reshape(g, _wsize(x)) .* ivar
dg .= squeeze(sum(dy .* (x .- reshape(running_mean, _wsize(x))) .* ivar, _reddims(dy)), (1,2,4))
db .= squeeze(sum(dy, _reddims(dy)), (1,2,4))
dg .= squeeze(sum(dy .* (x .- reshape(running_mean, _wsize(x))) .* ivar, _reddims(dy)), dims = (1,2,4))
db .= squeeze(sum(dy, _reddims(dy)), dims = (1,2,4))
end
end

View File

@ -36,14 +36,14 @@ mutable struct RNNDesc{T}
params::CuVector{T}
weights::NTuple{2,CuMatrix{T}}
bias::CuVector{T}
ptr::Ptr{Void}
ptr::Ptr{Nothing}
end
Base.unsafe_convert(::Type{Ptr{Void}}, d::RNNDesc) = d.ptr
Base.unsafe_convert(::Type{Ptr{Nothing}}, d::RNNDesc) = d.ptr
function rnnParamSize(T, r, input)
size = Csize_t[0]
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Csize_t},Cint),
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Ptr{Nothing},Ptr{Csize_t},Cint),
libcudnn_handle[], r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T))
return Int(size[])÷sizeof(T)
end
@ -53,26 +53,26 @@ ngates(r::RNNDesc) = ngates(r.mode)
function RNNDesc{T}(mode::Int, input::Int, hidden::Int; layers = 1) where T
d = [C_NULL]
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Void}},),d)
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Nothing}},),d)
dropoutDesc = DropoutDesc(0)
inputMode = LINEAR_INPUT
direction = UNIDIRECTIONAL
algo = RNN_ALGO_STANDARD
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Cint,Ptr{Void},Cint,Cint,Cint,Cint,Cint),
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Cint,Ptr{Nothing},Cint,Cint,Cint,Cint,Cint),
libcudnn_handle[],d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T))
w = cuzeros(T, rnnParamSize(T, d[], input))
# TODO: avoid reserve allocation here
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates(mode))..., d[])
finalizer(rd, x ->
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x))
return rd
end
function rnnWorkspaceSize(r::RNNDesc, seqlen, xdesc)
size = Csize_t[0]
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Ptr{Void}},Ptr{Csize_t}),
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Ptr{Ptr{Nothing}},Ptr{Csize_t}),
libcudnn_handle[], r, seqlen, xdesc, size)
return Int(size[])
end
@ -89,7 +89,7 @@ getworkspace(r::RNNDesc, seqlen, xdesc) =
function rnnTrainingReserveSize(r::RNNDesc, seqlen, xdesc)
size = Csize_t[0]
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Void}, Ptr{Void}, Cint, Ptr{Ptr{Void}}, Ptr{Csize_t}),
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Nothing}, Ptr{Nothing}, Cint, Ptr{Ptr{Nothing}}, Ptr{Csize_t}),
libcudnn_handle[], r, seqlen, xdesc, size)
return Int(size[])
end
@ -98,19 +98,19 @@ function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd
workspace, reserve=nothing) where T
if reserve == nothing
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
(Ptr{Void}, Ptr{Void}, Cint,
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T},
Ptr{Void}, Csize_t),
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t),
libcudnn_handle[], rnn, seqlen,
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
workspace, length(workspace))
else
@check ccall((:cudnnRNNForwardTraining, libcudnn), cudnnStatus_t,
(Ptr{Void}, Ptr{Void}, Cint,
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
Ptr{Void}, Csize_t, Ptr{Void}, Csize_t),
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
libcudnn_handle[], rnn, seqlen,
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
workspace, length(workspace), reserve, length(reserve))
@ -119,7 +119,7 @@ end
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))]
hDesc(h::Void) = C_NULL, C_NULL
hDesc(h::Nothing) = C_NULL, C_NULL
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing))
function hDesc(h::CuArray)
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h
@ -166,18 +166,18 @@ forwardTrain(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing) where T
function cudnnRNNBackwardData(rnn::RNNDesc{T}, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, rs) where T
@check ccall((:cudnnRNNBackwardData,libcudnn),cudnnStatus_t,
(Ptr{Void}, Ptr{Void}, Cint,
Ptr{Ptr{Void}}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T},
Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void},
Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T},
Ptr{Void}, Csize_t, Ptr{Void}, Csize_t),
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing},
Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
libcudnn_handle[], rnn, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, length(ws), rs, length(rs))
end
function backwardData(rnn::RNNDesc{T}, y, dy_, dho, dco, h, c, reserve) where T
# Same as above, any more efficient way?
dy = dy_ isa Integer ? zeros(y) : dy_
dy = dy_ isa Integer ? zero(y) : dy_
yd = xDesc(y)
dx = y isa AbstractVector ? similar(dy, rnn.input) : similar(dy, rnn.input, size(dy, 2))
dh = similar(h)
@ -196,19 +196,19 @@ backwardData(rnn, y, dy, dho, hx, reserve) =
function cudnnRNNBackwardWeights(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, yd, y, dwd, dw,
workspace, reserve) where T
@check ccall((:cudnnRNNBackwardWeights,libcudnn), cudnnStatus_t,
(Ptr{Void}, Ptr{Void}, Cint, # handle, rnnDesc, seqLength
Ptr{Ptr{Void}}, Ptr{T}, #x
Ptr{Void}, Ptr{T}, #hx
Ptr{Ptr{Void}}, Ptr{T}, #y
Ptr{Void}, Csize_t, #ws
Ptr{Void}, Ptr{T}, #dw
Ptr{Void}, Csize_t), #rs
(Ptr{Nothing}, Ptr{Nothing}, Cint, # handle, rnnDesc, seqLength
Ptr{Ptr{Nothing}}, Ptr{T}, #x
Ptr{Nothing}, Ptr{T}, #hx
Ptr{Ptr{Nothing}}, Ptr{T}, #y
Ptr{Nothing}, Csize_t, #ws
Ptr{Nothing}, Ptr{T}, #dw
Ptr{Nothing}, Csize_t), #rs
libcudnn_handle[], rnn, seqlen, xd, x, hd, h, yd, y,
workspace, length(workspace), dwd, dw, reserve, length(reserve))
end
function backwardWeights(rnn::RNNDesc{T}, x, h, y, reserve) where T
dw = zeros(rnn.params)
dw = zero(rnn.params)
cudnnRNNBackwardWeights(rnn, 1,
xDesc(x), x, hDesc(h)..., xDesc(y), y,
FilterDesc(T, (1, 1, length(dw))), dw,

View File

@ -141,8 +141,8 @@ function (BN::BatchNorm)(x)
# update moving mean/std
mtm = data(convert(T, BN.momentum))
BN.μ = ((1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...)))
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* squeeze(data(σ²), (axes...)) .* m ./ (m - 1))
BN.μ = ((1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), dims = (axes...)))
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* squeeze(data(σ²), dims = (axes...)) .* m ./ (m - 1))
end
ϵ = convert(T, BN.ϵ)