commit
4c1b1eb18c
|
@ -30,3 +30,11 @@ leakyrelu
|
|||
elu
|
||||
swish
|
||||
```
|
||||
|
||||
## Normalisation & Regularisation
|
||||
|
||||
These layers don't affect the structure of the network but may improve training times or reduce overfitting.
|
||||
|
||||
```@docs
|
||||
Dropout
|
||||
```
|
||||
|
|
|
@ -7,7 +7,7 @@ module Flux
|
|||
using Juno, Requires
|
||||
using Lazy: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM,
|
||||
export Chain, Dense, RNN, LSTM, Dropout,
|
||||
SGD, ADAM, Momentum, Nesterov,
|
||||
param, params, mapleaves
|
||||
|
||||
|
@ -27,5 +27,6 @@ include("tree.jl")
|
|||
include("layers/stateless.jl")
|
||||
include("layers/basic.jl")
|
||||
include("layers/recurrent.jl")
|
||||
include("layers/normalisation.jl")
|
||||
|
||||
end # module
|
||||
|
|
|
@ -27,7 +27,7 @@ end
|
|||
children(c::Chain) = c.layers
|
||||
mapchildren(f, c::Chain) = Chain(f.(c.layers)...)
|
||||
|
||||
(s::Chain)(x) = foldl((x, m) -> m(x), x, s.layers)
|
||||
(c::Chain)(x) = foldl((x, m) -> m(x), x, c.layers)
|
||||
|
||||
Base.getindex(c::Chain, i::AbstractArray) = Chain(c.layers[i]...)
|
||||
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
"""
|
||||
testmode!(m)
|
||||
testmode!(m, false)
|
||||
|
||||
Put layers like [`Dropout`](@ref) and `BatchNorm` into testing mode (or back to
|
||||
training mode with `false`).
|
||||
"""
|
||||
function testmode!(m, val::Bool=true)
|
||||
prefor(x -> _testmode!(x, val), m)
|
||||
return m
|
||||
end
|
||||
|
||||
_testmode!(m, test) = nothing
|
||||
|
||||
"""
|
||||
Dropout(p)
|
||||
|
||||
A Dropout layer. For each input, either sets that input to `0` (with probability
|
||||
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
|
||||
reduces overfitting during training.
|
||||
|
||||
Does nothing to the input once in [`testmode!`](@ref).
|
||||
"""
|
||||
mutable struct Dropout{F}
|
||||
p::F
|
||||
active::Bool
|
||||
end
|
||||
|
||||
function Dropout(p)
|
||||
@assert 0 ≤ p ≤ 1
|
||||
Dropout{typeof(p)}(p, true)
|
||||
end
|
||||
|
||||
function (a::Dropout)(x)
|
||||
a.active || return x
|
||||
y = similar(x)
|
||||
rand!(y)
|
||||
q = 1 - a.p
|
||||
@inbounds for i=1:length(y)
|
||||
y[i] = y[i] > a.p ? 1 / q : 0
|
||||
end
|
||||
return y .* x
|
||||
end
|
||||
|
||||
_testmode!(a::Dropout, test) = (a.active = !test)
|
|
@ -56,6 +56,18 @@ Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
|
|||
|
||||
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
|
||||
|
||||
value(x) = x
|
||||
value(x::TrackedArray) = data(x)
|
||||
value(x::TrackedScalar) = data(x)[]
|
||||
|
||||
Base.:(==)(x::TrackedArray, y) = value(x) == y
|
||||
Base.:(==)(y, x::TrackedArray) = y == value(x)
|
||||
Base.:(==)(x::TrackedArray, y::TrackedArray) = value(x) == value(x)
|
||||
|
||||
Base.isless(x::TrackedScalar, y) = isless(value(x), y)
|
||||
Base.isless(x, y::TrackedScalar) = isless(x, value(y))
|
||||
Base.isless(x::TrackedScalar, y::TrackedScalar) = isless(value(x), value(y))
|
||||
|
||||
Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
|
||||
print(io, "TrackedArray{…,$A}")
|
||||
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
using Flux: testmode!
|
||||
|
||||
@testset "Dropout" begin
|
||||
x = [1.,2.,3.]
|
||||
@test x == testmode!(Dropout(0.1))(x)
|
||||
@test x == Dropout(0)(x)
|
||||
@test zeros(x) == Dropout(1)(x)
|
||||
|
||||
x = rand(100)
|
||||
m = Dropout(0.9)
|
||||
y = m(x)
|
||||
@test count(a->a==0, y) > 50
|
||||
testmode!(m)
|
||||
y = m(x)
|
||||
@test count(a->a==0, y) == 0
|
||||
testmode!(m, false)
|
||||
y = m(x)
|
||||
@test count(a->a==0, y) > 50
|
||||
|
||||
x = rand(100)
|
||||
m = Chain(Dense(100,100),
|
||||
Dropout(0.9))
|
||||
y = m(x)
|
||||
@test count(a->a == 0, y) > 50
|
||||
testmode!(m)
|
||||
y = m(x)
|
||||
@test count(a->a == 0, y) == 0
|
||||
end
|
|
@ -4,5 +4,6 @@ using Flux, Base.Test
|
|||
|
||||
include("utils.jl")
|
||||
include("tracker.jl")
|
||||
include("layers/normalisation.jl")
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue