Reshape 2D tensors to use cudnn batchnorm

This commit is contained in:
Avik Pal 2018-11-08 19:23:07 +05:30
parent 564518e448
commit 4d703b31a1

View File

@ -39,8 +39,14 @@ end
BNCache() = BNCache(nothing, nothing)
# CuDNN supports only 4D and 5D Tensors for BatchNorm Operations
# so use the native julia code when doing batchnorm on a 2D Array
# NOTE: CuDNN supports only 4D and 5D Tensors for BatchNorm Operations
# so reshape a 2D Tensor into 4D
batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T, 2},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, alpha = T(1), beta = T(0),
eps = T(1e-5), training = true) where T<:Union{Float32, Float64} =
batchnorm(g, b, reshape(x, 1, 1, size(x, 1), size(x, 2)), running_mean, running_var, momentum,
cache = cache, alpha = alpha, beta = beta, eps = eps, training = training)
function batchnorm(g::CuArray{T}, b::CuArray{T}, x::Union{CuArray{T, 4},CuArray{T,5}},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
@ -115,6 +121,14 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
end
end
∇batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T, 2}, dy::CuArray{T, 2},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, eps = T(1e-5), alpha = T(1),
beta = T(0), training = true) where T<:Union{Float32, Float64} =
∇batchnorm(g, b, reshape(x, 1, 1, size(x, 1), size(x, 2)), reshape(dy, 1, 1, size(dy, 1), size(dy, 2)),
running_mean, running_var, momentum, cache = cache, eps = eps, alpha = alpha, beta = beta,
training = training)
function ∇batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T}, dy::CuArray{T},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, eps = T(1e-5), alpha = T(1),
@ -176,7 +190,7 @@ end
# Flux Interface
(BN::Flux.BatchNorm)(x::Union{CuParam{T,4},CuParam{T,5}}, cache = nothing) where T<:Union{Float32, Float64} =
(BN::Flux.BatchNorm)(x::Union{CuParam{T,2},CuParam{T,4},CuParam{T,5}}, cache = nothing) where T<:Union{Float32, Float64} =
batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum; cache = cache, alpha = 1, beta = 0, eps = BN.ϵ, training = BN.active)
batchnorm(g::TrackedArray, b::TrackedArray, x::TrackedArray, running_mean::CuArray{T},