basic sequence model training
This commit is contained in:
parent
d9abb8f0ce
commit
4de16171db
@ -19,7 +19,7 @@ function tf(model::Flux.Unrolled)
|
|||||||
Model(model, sess, params,
|
Model(model, sess, params,
|
||||||
[instates..., input], [outstates..., output],
|
[instates..., input], [outstates..., output],
|
||||||
[gradients(output, input)]),
|
[gradients(output, input)]),
|
||||||
[])
|
batchone.(model.states))
|
||||||
end
|
end
|
||||||
|
|
||||||
function batchseq(xs)
|
function batchseq(xs)
|
||||||
@ -40,3 +40,24 @@ function (m::SeqModel)(x::BatchSeq)
|
|||||||
end
|
end
|
||||||
|
|
||||||
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
|
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
|
||||||
|
|
||||||
|
function Flux.train!(m::SeqModel, train; epoch = 1, η = 0.1,
|
||||||
|
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
||||||
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||||
|
i = 0
|
||||||
|
Y = placeholder(Float32)
|
||||||
|
Loss = loss(m.m.output[end], Y)
|
||||||
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||||
|
for e in 1:epoch
|
||||||
|
info("Epoch $e\n")
|
||||||
|
@progress for (x, y) in train
|
||||||
|
y, cur_loss, _ = run(m.m.session, vcat(m.m.output[end], Loss, minimize_op),
|
||||||
|
merge(Dict(m.m.inputs[end]=>batchone(x), Y=>batchone(y)),
|
||||||
|
Dict(zip(m.m.inputs[1:end-1], m.state))))
|
||||||
|
if i % 5000 == 0
|
||||||
|
@show y
|
||||||
|
end
|
||||||
|
i += 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user