diff --git a/src/layers/conv.jl b/src/layers/conv.jl index f7ca6f02..82d90029 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -10,5 +10,11 @@ Conv2D(k::NTuple{2,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; Flux.treelike(Conv2D) -# (c::Conv2D)(x) = c.σ.(conv2d(x, c.weight, stride = c.stride)) -(c::Conv2D)(x) = c.σ.(conv2d(x, c.weight)) +(c::Conv2D)(x) = c.σ.(conv2d(x, c.weight, stride = c.stride)) + +function Base.show(io::IO, l::Conv2D) + print(io, "Conv2D((", size(l.weight, 1), ", ", size(l.weight, 2), ")") + print(io, ", ", size(l.weight, 3), "=>", size(l.weight, 4)) + l.σ == identity || print(io, ", ", l.σ) + print(io, ")") +end diff --git a/src/tracker/lib.jl b/src/tracker/lib.jl index 71d93e88..580992ef 100644 --- a/src/tracker/lib.jl +++ b/src/tracker/lib.jl @@ -136,13 +136,18 @@ softmax(xs::TrackedArray) = TrackedArray(Call(softmax, xs)) back(::typeof(softmax), Δ, xs) = @back(xs, ∇softmax(Δ, data(xs))) -conv2d(x::TrackedArray{<:Any,4}, w::TrackedArray{<:Any,4}) = TrackedArray(Call(conv2d, x, w)) -conv2d(x::AbstractArray{<:Any,4}, w::TrackedArray{<:Any,4}) = TrackedArray(Call(conv2d, x, w)) -conv2d(x::TrackedArray{<:Any,4}, w::AbstractArray{<:Any,4}) = TrackedArray(Call(conv2d, x, w)) +_conv2d(x, w, stride) = conv2d(x, w, stride = stride) -function back(::typeof(conv2d), Δ, x, w) - @back(x, NNlib.conv2d_grad_x(data(x), data(w), Δ)) - @back(w, NNlib.conv2d_grad_w(data(x), data(w), Δ)) +conv2d(x::TrackedArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1) = + TrackedArray(Call(_conv2d, x, w, stride)) +conv2d(x::AbstractArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1) = + TrackedArray(Call(_conv2d, x, w, stride)) +conv2d(x::TrackedArray{<:Any,4}, w::AbstractArray{<:Any,4}; stride = 1) = + TrackedArray(Call(_conv2d, x, w, stride)) + +function back(::typeof(_conv2d), Δ, x, w, stride) + @back(x, NNlib.conv2d_grad_x(data(x), data(w), Δ; stride = stride)) + @back(w, NNlib.conv2d_grad_w(data(x), data(w), Δ; stride = stride)) end _pool(x, k, mode) = pool(x, window = k, mode = mode)