parent
0ef6456903
commit
5a023a9ccc
|
@ -10,7 +10,6 @@ export Chain, Dense, RNN, LSTM, GRU, Conv,
|
|||
params, mapleaves, cpu, gpu
|
||||
|
||||
@reexport using NNlib
|
||||
using NNlib: @fix
|
||||
|
||||
include("tracker/Tracker.jl")
|
||||
using .Tracker
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
module CUDA
|
||||
|
||||
using CuArrays
|
||||
using ..CuArrays
|
||||
|
||||
CuArrays.cudnn_available() && include("cudnn.jl")
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, libcudnn_handle,
|
||||
using .CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, libcudnn_handle,
|
||||
cudnnDataType, TensorDesc, FilterDesc
|
||||
|
||||
using LinearAlgebra
|
||||
using LinearAlgebra
|
||||
|
||||
mutable struct DropoutDesc
|
||||
ptr::Ptr{Nothing}
|
||||
|
@ -243,8 +243,8 @@ end
|
|||
|
||||
import ..Flux: Flux, relu
|
||||
import ..Tracker: TrackedArray
|
||||
using CUDAnative
|
||||
using CuArrays: @cuindex, cudims
|
||||
using .CuArrays.CUDAnative
|
||||
using .CuArrays: @cuindex, cudims
|
||||
|
||||
function LinearAlgebra.copy_transpose!(dst::CuArray, src::CuArray)
|
||||
function kernel(dst, src)
|
||||
|
@ -326,7 +326,7 @@ end
|
|||
h_ = hBatch(x, data(h))
|
||||
dx, dh = backwardData(descs[m], y, dy, dho, h_, reserve)
|
||||
(dWi, dWh), db = backwardWeights(descs[m], data(x), h_, y, reserve)
|
||||
nobacksies(:RNN, (dx, unbroadcast(size(h), dh), dWi.', dWh.', db))
|
||||
nobacksies(:RNN, (dx, unbroadcast(size(h), dh), transpose(dWi), transpose(dWh), db))
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -341,6 +341,6 @@ end
|
|||
(dWi, dWh), db = backwardWeights(descs[m], data(x), h_, y, reserve)
|
||||
nobacksies(:RNN,
|
||||
(dx, unbroadcast(size(h), dh), unbroadcast(size(c), dc),
|
||||
dWi.', dWh.', db))
|
||||
transpose(dWi), transpose(dWh), db))
|
||||
end
|
||||
end
|
||||
|
|
|
@ -77,7 +77,7 @@ end
|
|||
|
||||
function (a::Dense)(x)
|
||||
W, b, σ = a.W, a.b, a.σ
|
||||
@fix σ.(W*x .+ b)
|
||||
σ.(W*x .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::Dense)
|
||||
|
|
|
@ -5,7 +5,7 @@ using NNlib: logsoftmax, logσ
|
|||
mse(ŷ, y) = sum((ŷ .- y).^2)/length(y)
|
||||
|
||||
function crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
||||
@fix -sum(y .* log.(ŷ) .* weight) / size(y, 2)
|
||||
-sum(y .* log.(ŷ) .* weight) / size(y, 2)
|
||||
end
|
||||
|
||||
@deprecate logloss(x, y) crossentropy(x, y)
|
||||
|
|
|
@ -33,8 +33,9 @@ import Adapt.adapt
|
|||
adapt(T, xs::OneHotMatrix) = OneHotMatrix(xs.height, adapt(T, xs.data))
|
||||
|
||||
@init @require CuArrays="3a865a2d-5b23-5a0f-bc46-62713ec82fae" begin
|
||||
import CuArrays: CuArray, cudaconvert
|
||||
Base.Broadcast._containertype(::Type{<:OneHotMatrix{<:CuArray}}) = CuArray
|
||||
import .CuArrays: CuArray, cudaconvert
|
||||
import Base.Broadcast: BroadcastStyle, ArrayStyle
|
||||
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = ArrayStyle{CuArray}()
|
||||
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
|
||||
end
|
||||
|
||||
|
|
|
@ -381,3 +381,32 @@ function Base.copy(bc::Broadcast.Broadcasted{TrackedStyle})
|
|||
bc = Broadcast.flatten(bc)
|
||||
∇broadcast(bc.f, bc.args...)
|
||||
end
|
||||
|
||||
using Requires
|
||||
|
||||
# https://github.com/FluxML/Flux.jl/issues/353
|
||||
@init @eval Base.Broadcast begin
|
||||
function flatten(bc::Broadcasted{Style}) where {Style}
|
||||
isflat(bc) && return bc
|
||||
args = cat_nested(bc)
|
||||
let makeargs = make_makeargs(bc), f = bc.f
|
||||
newf = @inline function(args::Vararg{Any,N}) where N
|
||||
f(makeargs(args...)...)
|
||||
end
|
||||
return Broadcasted{Style}(newf, args, bc.axes)
|
||||
end
|
||||
end
|
||||
@inline function make_makeargs(makeargs, t::Tuple{<:Broadcasted,Vararg{Any}})
|
||||
bc = t[1]
|
||||
let makeargs = make_makeargs(makeargs, tail(t)), f = bc.f
|
||||
let makeargs = make_makeargs(makeargs, bc.args)
|
||||
headargs, tailargs = make_headargs(bc.args), make_tailargs(bc.args)
|
||||
return @inline function(args::Vararg{Any,N}) where N
|
||||
args1 = makeargs(args...)
|
||||
a, b = headargs(args1...), tailargs(args1...)
|
||||
(f(a...), b...)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
|
|
@ -14,6 +14,7 @@ cx = gpu(x)
|
|||
x = Flux.onehotbatch([1, 2, 3], 1:3)
|
||||
cx = gpu(x)
|
||||
@test cx isa Flux.OneHotMatrix && cx.data isa CuArray
|
||||
@test (cx .+ 1) isa CuArray
|
||||
|
||||
m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax)
|
||||
cm = gpu(m)
|
||||
|
|
|
@ -3,6 +3,9 @@ using Random
|
|||
|
||||
Random.seed!(0)
|
||||
|
||||
# So we can use the system CuArrays
|
||||
insert!(LOAD_PATH, 2, "@v#.#")
|
||||
|
||||
@testset "Flux" begin
|
||||
|
||||
include("utils.jl")
|
||||
|
@ -12,7 +15,7 @@ include("layers/stateless.jl")
|
|||
include("optimise.jl")
|
||||
include("data.jl")
|
||||
|
||||
if Base.find_package("CuArrays") ≠ nothing
|
||||
if Base.find_package("CuArrays") != nothing
|
||||
include("cuda/cuda.jl")
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in New Issue