build based on e1cd688
This commit is contained in:
parent
e3994f9066
commit
5a6479aaaa
@ -140,7 +140,7 @@ Backends
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/apis/backends.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/apis/backends.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
@ -166,7 +166,7 @@ Currently, Flux's pure-Julia backend has no optimisations. This means that c
|
||||
</p>
|
||||
<pre><code class="language-julia">model(rand(10)) #> [0.0650, 0.0655, ...]</code></pre>
|
||||
<p>
|
||||
directly won't have great performance. In order to support a computationally intensive training process, we really on a backend like MXNet or TensorFlow.
|
||||
directly won't have great performance. In order to run a computationally intensive training process, we rely on a backend like MXNet or TensorFlow.
|
||||
</p>
|
||||
<p>
|
||||
This is easy to do. Just call either
|
||||
|
@ -145,7 +145,7 @@ Batching
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/apis/batching.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/apis/batching.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -126,7 +126,7 @@ Contributing & Help
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/contributing.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/contributing.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -129,7 +129,7 @@ Logistic Regression
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/examples/logreg.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/examples/logreg.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -132,7 +132,7 @@ Home
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/index.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/index.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -126,7 +126,7 @@ Internals
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/internals.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/internals.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -145,7 +145,7 @@ Model Building Basics
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/models/basics.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/models/basics.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -129,7 +129,7 @@ Debugging
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/models/debugging.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/models/debugging.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -129,7 +129,7 @@ Recurrence
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/models/recurrent.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/models/recurrent.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -145,7 +145,7 @@ Model Templates
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/85c3dac3b3342921e9ce692acbd0efc25d023f3a/docs/src/models/templates.md">
|
||||
<a class="edit-page" href="https://github.com/MikeInnes/Flux.jl/tree/e1cd688917d90dd80ff59f926ae24e27e1c7635e/docs/src/models/templates.md">
|
||||
<span class="fa">
|
||||
|
||||
</span>
|
||||
|
@ -197,7 +197,7 @@ var documenterSearchIndex = {"docs": [
|
||||
"page": "Backends",
|
||||
"title": "Basic Usage",
|
||||
"category": "section",
|
||||
"text": "model = Chain(Affine(10, 20), σ, Affine(20, 15), softmax)\nxs = rand(10)Currently, Flux's pure-Julia backend has no optimisations. This means that callingmodel(rand(10)) #> [0.0650, 0.0655, ...]directly won't have great performance. In order to support a computationally intensive training process, we really on a backend like MXNet or TensorFlow.This is easy to do. Just call either mxnet or tf on a model to convert it to a model of that kind:mxmodel = mxnet(model, (10, 1))\nmxmodel(xs) #> [0.0650, 0.0655, ...]\n# or\ntfmodel = tf(model)\ntfmodel(xs) #> [0.0650, 0.0655, ...]These new models look and feel exactly like every other model in Flux, including returning the same result when you call them, and can be trained as usual using Flux.train!(). The difference is that the computation is being carried out by a backend, which will usually give a large speedup."
|
||||
"text": "model = Chain(Affine(10, 20), σ, Affine(20, 15), softmax)\nxs = rand(10)Currently, Flux's pure-Julia backend has no optimisations. This means that callingmodel(rand(10)) #> [0.0650, 0.0655, ...]directly won't have great performance. In order to run a computationally intensive training process, we rely on a backend like MXNet or TensorFlow.This is easy to do. Just call either mxnet or tf on a model to convert it to a model of that kind:mxmodel = mxnet(model, (10, 1))\nmxmodel(xs) #> [0.0650, 0.0655, ...]\n# or\ntfmodel = tf(model)\ntfmodel(xs) #> [0.0650, 0.0655, ...]These new models look and feel exactly like every other model in Flux, including returning the same result when you call them, and can be trained as usual using Flux.train!(). The difference is that the computation is being carried out by a backend, which will usually give a large speedup."
|
||||
},
|
||||
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user