Merge branch 'master' into tb/cuarrays_dnn
This commit is contained in:
commit
5baebf48f4
|
@ -58,9 +58,9 @@ version = "3.1.0"
|
|||
|
||||
[[CUDAnative]]
|
||||
deps = ["Adapt", "CUDAapi", "CUDAdrv", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "Logging", "Printf", "TimerOutputs"]
|
||||
git-tree-sha1 = "0a00bef482b7c9127495c7f4a2a85e73b13b5af8"
|
||||
git-tree-sha1 = "52ae1ce10ebfa686e227655c47b19add89308623"
|
||||
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
|
||||
version = "2.3.0"
|
||||
version = "2.3.1"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["BinaryProvider", "Libdl", "TranscodingStreams"]
|
||||
|
@ -106,11 +106,11 @@ version = "4.0.0"
|
|||
|
||||
[[CuArrays]]
|
||||
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "GPUArrays", "LinearAlgebra", "MacroTools", "NNlib", "Printf", "Random", "Requires", "SparseArrays", "TimerOutputs"]
|
||||
git-tree-sha1 = "8189fcb50b24998bad7518e52443fdb542403093"
|
||||
git-tree-sha1 = "155349d2c40568a23cbc4599f0e17e2fdf1bbbcc"
|
||||
repo-rev = "tb/flux"
|
||||
repo-url = "https://github.com/JuliaGPU/CuArrays.jl.git"
|
||||
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
|
||||
version = "1.2.1"
|
||||
version = "1.3.0"
|
||||
|
||||
[[DataAPI]]
|
||||
git-tree-sha1 = "8903f0219d3472543fc4b2f5ebaf675a07f817c0"
|
||||
|
@ -149,9 +149,9 @@ uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
|||
|
||||
[[FFTW]]
|
||||
deps = ["AbstractFFTs", "BinaryProvider", "Conda", "Libdl", "LinearAlgebra", "Reexport", "Test"]
|
||||
git-tree-sha1 = "e1a479d3c972f20c9a70563eec740bbfc786f515"
|
||||
git-tree-sha1 = "03f8776fbdae28c20c0d1d2ae4e090cd1dfcd247"
|
||||
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
|
||||
version = "0.3.0"
|
||||
version = "1.0.0"
|
||||
|
||||
[[FillArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "SparseArrays"]
|
||||
|
@ -172,9 +172,9 @@ version = "0.10.3"
|
|||
|
||||
[[GPUArrays]]
|
||||
deps = ["Adapt", "FFTW", "FillArrays", "LinearAlgebra", "Printf", "Random", "Serialization", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "dd169c636d1d3656a9faca772f5bd7c226a61254"
|
||||
git-tree-sha1 = "b5009ac44b141ded5e6f04c4db83807970f56e91"
|
||||
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
|
||||
version = "1.0.1"
|
||||
version = "1.0.2"
|
||||
|
||||
[[IRTools]]
|
||||
deps = ["InteractiveUtils", "MacroTools", "Test"]
|
||||
|
@ -200,9 +200,9 @@ version = "0.7.2"
|
|||
|
||||
[[LLVM]]
|
||||
deps = ["CEnum", "Libdl", "Printf", "Unicode"]
|
||||
git-tree-sha1 = "52cfea426bd248a427aace7d88eb5d45b84ea297"
|
||||
git-tree-sha1 = "4a05f742837779a00bd8c9a18da6817367c4245d"
|
||||
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
|
||||
version = "1.2.0"
|
||||
version = "1.3.0"
|
||||
|
||||
[[LibGit2]]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
@ -390,7 +390,7 @@ version = "0.8.3"
|
|||
|
||||
[[Zygote]]
|
||||
deps = ["DiffRules", "FFTW", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
|
||||
git-tree-sha1 = "9186cb0b3b59219e4aba0840614d6a9d7282012e"
|
||||
git-tree-sha1 = "ce6d7142d665b1e4c71c678fa7db4da3bbc6743f"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/Zygote.jl.git"
|
||||
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
|
|
|
@ -5,7 +5,7 @@ Consider a [simple linear regression](../models/basics.md). We create some dummy
|
|||
```julia
|
||||
using Flux
|
||||
|
||||
W = rand(2, 5))
|
||||
W = rand(2, 5)
|
||||
b = rand(2)
|
||||
|
||||
predict(x) = (W * x) .+ b
|
||||
|
|
|
@ -44,7 +44,8 @@ function desc(rnn)
|
|||
return d
|
||||
end
|
||||
|
||||
using ..Flux: @adjoint
|
||||
import Zygote
|
||||
using Zygote: @adjoint
|
||||
|
||||
function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
y, h′ = CUDNN.forward(desc(m), x, h)
|
||||
|
@ -72,15 +73,29 @@ unbroadcast(x::AbstractArray, Δ) =
|
|||
length(x) == length(Δ) ? trim(x, Δ) :
|
||||
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
|
||||
|
||||
coerce_cuda(x::Union{CuArray,Nothing}) = x
|
||||
coerce_cuda(x::Tuple) = coerce_cuda.(x)
|
||||
|
||||
coerce_cuda(x) = x .+ CuArrays.fill(0)
|
||||
|
||||
function struct_grad!(cx::Zygote.Context, x, x̄)
|
||||
for f in fieldnames(typeof(x))
|
||||
Zygote.accum_param(cx, getfield(x, f), getfield(x̄, f))
|
||||
end
|
||||
dx = Zygote.grad_mut(cx, x)
|
||||
dx[] = Zygote.accum(dx[], x̄)
|
||||
return dx
|
||||
end
|
||||
|
||||
for RNN in (CuRNN, CuGRU)
|
||||
@eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
reserve, (y, ho) = CUDNN.forwardTrain(desc(m), x, h)
|
||||
(ho, y), function (Δ)
|
||||
dho, dy = Δ
|
||||
dho, dy = coerce_cuda(Δ)
|
||||
h_ = CUDNN.hBatch(x, h)
|
||||
dx, dh = CUDNN.backwardData(descs[m], y, dy, dho, h_, reserve)
|
||||
(dWi, dWh), db = CUDNN.backwardWeights(descs[m], x, h_, y, reserve)
|
||||
dm = Ref{Any}((σ=nothing,Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing))
|
||||
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing))
|
||||
(dm, unbroadcast(h, dh), dx)
|
||||
end
|
||||
end
|
||||
|
@ -89,13 +104,13 @@ end
|
|||
@adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
reserve, (y, ho, co) = CUDNN.forwardTrain(desc(m), x, h, c)
|
||||
((ho, co), y), function (Δ)
|
||||
dhc, dy = Δ
|
||||
dhc, dy = coerce_cuda(Δ)
|
||||
dho, dco = dhc === nothing ? (nothing, nothing) : dhc
|
||||
h_ = CUDNN.hBatch(x, h)
|
||||
c_ = CUDNN.hBatch(x, c)
|
||||
dx, dh, dc = CUDNN.backwardData(descs[m], y, dy, dho, dco, h_, c_, reserve)
|
||||
(dWi, dWh), db = CUDNN.backwardWeights(descs[m], x, h_, y, reserve)
|
||||
dm = Ref{Any}((Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing,c=nothing))
|
||||
dm = struct_grad!(__context__, m, (Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing,c=nothing))
|
||||
(dm, (unbroadcast(h, dh), unbroadcast(c, dc)), dx)
|
||||
end
|
||||
end
|
||||
|
|
|
@ -1,6 +1,15 @@
|
|||
using Flux, CuArrays, Test
|
||||
using Flux: forward
|
||||
|
||||
@testset for R in [RNN, GRU, LSTM]
|
||||
m = R(10, 5) |> gpu
|
||||
x = gpu(rand(10))
|
||||
(m̄,) = gradient(m -> sum(m(x)), m)
|
||||
Flux.reset!(m)
|
||||
θ = gradient(() -> sum(m(x)), params(m))
|
||||
@test collect(m̄[].cell[].Wi) == collect(θ[m.cell.Wi])
|
||||
end
|
||||
|
||||
@testset "RNN" begin
|
||||
@testset for R in [RNN, GRU, LSTM], batch_size in (1, 5)
|
||||
rnn = R(10, 5)
|
||||
|
|
Loading…
Reference in New Issue