make dims as field of Dropout
This commit is contained in:
parent
261235311c
commit
5c5140683c
@ -13,22 +13,24 @@ end
|
|||||||
_testmode!(m, test) = nothing
|
_testmode!(m, test) = nothing
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Dropout(p)
|
Dropout(p, dims = :)
|
||||||
|
|
||||||
A Dropout layer. For each input, either sets that input to `0` (with probability
|
A Dropout layer. For each input, either sets that input to `0` (with probability
|
||||||
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
|
`p`) or scales it by `1/(1-p)`. The `dims` argument is to specified the unbroadcasted
|
||||||
reduces overfitting during training.
|
dimensions, i.e. `dims=1` does dropout along columns and `dims=2` along rows. This is
|
||||||
|
used as a regularisation, i.e. it reduces overfitting during training. see also [`dropout`](@ref).
|
||||||
|
|
||||||
Does nothing to the input once in [`testmode!`](@ref).
|
Does nothing to the input once in [`testmode!`](@ref).
|
||||||
"""
|
"""
|
||||||
mutable struct Dropout{F}
|
mutable struct Dropout{F}
|
||||||
p::F
|
p::F
|
||||||
|
dims::Union{Colon, Int, NTuple{N, Int} where N}
|
||||||
active::Bool
|
active::Bool
|
||||||
end
|
end
|
||||||
|
|
||||||
function Dropout(p)
|
function Dropout(p; dims = :)
|
||||||
@assert 0 ≤ p ≤ 1
|
@assert 0 ≤ p ≤ 1
|
||||||
Dropout{typeof(p)}(p, true)
|
Dropout{typeof(p)}(p, dims, true)
|
||||||
end
|
end
|
||||||
|
|
||||||
_dropout_shape(s, ::Colon) = size(s)
|
_dropout_shape(s, ::Colon) = size(s)
|
||||||
@ -36,14 +38,27 @@ _dropout_shape(s, dims) = tuple((i ∉ dims ? 1 : si for (i, si) ∈ enumerate(s
|
|||||||
|
|
||||||
_dropout_kernel(y::T, p, q) where {T} = y > p ? T(1 / q) : T(0)
|
_dropout_kernel(y::T, p, q) where {T} = y > p ? T(1 / q) : T(0)
|
||||||
|
|
||||||
function (a::Dropout)(x; dims = :)
|
|
||||||
a.active || return x
|
"""
|
||||||
|
dropout(x, p; dims = :)
|
||||||
|
|
||||||
|
The dropout function. For each input, either sets that input to `0` (with probability
|
||||||
|
`p`) or scales it by `1/(1-p)`. The `dims` argument is to specified the unbroadcasted
|
||||||
|
dimensions, i.e. `dims=1` does dropout along columns and `dims=2` along rows. This is
|
||||||
|
used as a regularisation, i.e. it reduces overfitting during training.
|
||||||
|
"""
|
||||||
|
function dropout(x, p; dims = :)
|
||||||
y = similar(x, _dropout_shape(x, dims))
|
y = similar(x, _dropout_shape(x, dims))
|
||||||
rand!(y)
|
rand!(y)
|
||||||
y .= _dropout_kernel.(y, a.p, 1 - a.p)
|
y .= _dropout_kernel.(y, p, 1 - p)
|
||||||
return x .* y
|
return x .* y
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function (a::Dropout)(x)
|
||||||
|
a.active || return x
|
||||||
|
return dropout(x, a.p; dims = a.dims)
|
||||||
|
end
|
||||||
|
|
||||||
_testmode!(a::Dropout, test) = (a.active = !test)
|
_testmode!(a::Dropout, test) = (a.active = !test)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -28,11 +28,12 @@ using Flux.Tracker: data
|
|||||||
@test count(a->a == 0, y) == 0
|
@test count(a->a == 0, y) == 0
|
||||||
|
|
||||||
x = rand(100, 50)
|
x = rand(100, 50)
|
||||||
m = Dropout(0.5)
|
m = Dropout(0.5, dims = 2)
|
||||||
y = m(x; dims=2)
|
y = m(x)
|
||||||
c = map(i->count(a->a==0, @view y[i, :]), 1:100)
|
c = map(i->count(a->a==0, @view y[i, :]), 1:100)
|
||||||
@test minimum(c) == maximum(c)
|
@test minimum(c) == maximum(c)
|
||||||
y = m(x; dims=1)
|
m = Dropout(0.5, dims = 1)
|
||||||
|
y = m(x)
|
||||||
c = map(i->count(a->a==0, @view y[:, i]), 1:50)
|
c = map(i->count(a->a==0, @view y[:, i]), 1:50)
|
||||||
@test minimum(c) == maximum(c)
|
@test minimum(c) == maximum(c)
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user