make bias optional

This commit is contained in:
Dhairya Gandhi 2019-09-27 11:48:12 +05:30
parent 12bc06136d
commit 5ea6a33f44
2 changed files with 23 additions and 7 deletions

View File

@ -21,7 +21,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches).
In other words, a 100×100 RGB image would be a `100×100×3×1` array, In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array. and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`. Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
""" """
struct Conv{N,M,F,A,V} struct Conv{N,M,F,A,V}
σ::F σ::F
@ -30,29 +30,34 @@ struct Conv{N,M,F,A,V}
stride::NTuple{N,Int} stride::NTuple{N,Int}
pad::NTuple{M,Int} pad::NTuple{M,Int}
dilation::NTuple{N,Int} dilation::NTuple{N,Int}
use_bias::Bool
end end
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
stride = expand(Val(N-2), stride) stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad) pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation) dilation = expand(Val(N-2), dilation)
return Conv(σ, w, b, stride, pad, dilation) return Conv(σ, w, b, stride, pad, dilation, use_bias)
end end
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
Conv(init(k..., ch...), zeros(ch[2]), σ, Conv(init(k..., ch...), zeros(ch[2]), σ,
stride = stride, pad = pad, dilation = dilation) stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
@functor Conv @functor Conv
function (c::Conv)(x::AbstractArray) function (c::Conv)(x::AbstractArray)
# TODO: breaks gpu broadcast :( # TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
if c.use_bias
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ.(conv(x, c.weight, cdims) .+ b) σ.(conv(x, c.weight, cdims) .+ b)
else
c.σ.(conv(x, c.weight, cdims))
end
end end
function Base.show(io::IO, l::Conv) function Base.show(io::IO, l::Conv)

View File

@ -20,6 +20,17 @@ end
Dense(288, 10), softmax) Dense(288, 10), softmax)
@test size(m(r)) == (10, 5) @test size(m(r)) == (10, 5)
# Test bias switch
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3))
ip = zeros(Float32, 28,28,1,1)
op = bias(ip)
@test sum(op) == prod(size(op))
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3), use_bias = false)
op = bias(ip)
@test sum(op) === 0.f0
end end
@testset "asymmetric padding" begin @testset "asymmetric padding" begin