update translation model
This commit is contained in:
parent
10abb64f4b
commit
60b4e1c41c
@ -1,52 +1,50 @@
|
|||||||
# Based on https://arxiv.org/abs/1409.0473
|
# Based on https://arxiv.org/abs/1409.0473
|
||||||
|
|
||||||
using Flux
|
using Flux
|
||||||
using Flux: flip
|
using Flux: flip, stateless, broadcastto, ∘
|
||||||
|
|
||||||
|
Nbatch = 3 # Number of phrases to batch together
|
||||||
|
Nphrase = 5 # The length of (padded) phrases
|
||||||
|
Nalpha = 7 # The size of the token vector
|
||||||
|
Nhidden = 10 # The size of the hidden state
|
||||||
|
|
||||||
# A recurrent model which takes a token and returns a context-dependent
|
# A recurrent model which takes a token and returns a context-dependent
|
||||||
# annotation.
|
# annotation.
|
||||||
|
|
||||||
@net type Encoder
|
forward = LSTM(Nalpha, Nhidden÷2)
|
||||||
forward
|
backward = flip(LSTM(Nalpha, Nhidden÷2))
|
||||||
backward
|
encoder = @net token -> hcat(forward(token), backward(token))
|
||||||
token -> hcat(forward(token), backward(token))
|
|
||||||
end
|
|
||||||
|
|
||||||
Encoder(in::Integer, out::Integer) =
|
alignnet = Affine(2Nhidden, 1)
|
||||||
Encoder(LSTM(in, out÷2), flip(LSTM(in, out÷2)))
|
align = @net (s, t) -> alignnet(hcat(broadcastto(s, (Nbatch, 1)), t))
|
||||||
|
|
||||||
# A recurrent model which takes a sequence of annotations, attends, and returns
|
# A recurrent model which takes a sequence of annotations, attends, and returns
|
||||||
# a predicted output token.
|
# a predicted output token.
|
||||||
|
|
||||||
@net type Decoder
|
recur = unroll1(LSTM(Nhidden, Nhidden)).model
|
||||||
attend
|
state = param(zeros(1, Nhidden))
|
||||||
recur
|
y = param(zeros(1, Nhidden))
|
||||||
state; y; N
|
toalpha = Affine(Nhidden, Nalpha)
|
||||||
function (anns)
|
|
||||||
energies = map(ann -> exp(attend(hcat(state{-1}, ann))[1]), seq(anns, N))
|
decoder = @net function (tokens)
|
||||||
weights = energies./sum(energies)
|
energies = map(token -> exp.(align(state{-1}, token)), tokens)
|
||||||
ctx = sum(map((α, ann) -> α .* ann, weights, anns))
|
weights = map(e -> e ./ sum(energies), energies)
|
||||||
(_, state), y = recur((state{-1},y{-1}), ctx)
|
context = sum(map(∘, weights, tokens))
|
||||||
y
|
(y, state), _ = recur((y{-1},state{-1}), context)
|
||||||
end
|
return softmax(toalpha(y))
|
||||||
end
|
end
|
||||||
|
|
||||||
Decoder(in::Integer, out::Integer; N = 1) =
|
# Building the full model
|
||||||
Decoder(Affine(in+out, 1),
|
|
||||||
unroll1(LSTM(in, out)),
|
|
||||||
param(zeros(1, out)), param(zeros(1, out)), N)
|
|
||||||
|
|
||||||
# The model
|
a, b = rand(Nbatch, Nalpha), rand(Nbatch, Nalpha)
|
||||||
|
|
||||||
Nalpha = 5 # The size of the input token vector
|
model = @Chain(
|
||||||
Nphrase = 7 # The length of (padded) phrases
|
stateless(unroll(encoder, Nphrase)),
|
||||||
Nhidden = 12 # The size of the hidden state
|
@net(x -> repeated(x, Nphrase)),
|
||||||
|
stateless(unroll(decoder, Nphrase)))
|
||||||
|
|
||||||
encode = Encoder(Nalpha, Nhidden)
|
model = mxnet(Flux.SeqModel(model, Nphrase))
|
||||||
decode = Chain(Decoder(Nhidden, Nhidden, N = Nphrase), Affine(Nhidden, Nalpha), softmax)
|
|
||||||
|
|
||||||
model = Chain(
|
xs = Batch(Seq(rand(Nalpha) for i = 1:Nphrase) for i = 1:Nbatch)
|
||||||
unroll(encode, Nphrase, stateful = false),
|
|
||||||
unroll(decode, Nphrase, stateful = false, seq = false))
|
|
||||||
|
|
||||||
xs = Batch([Seq(rand(Float32, Nalpha) for _ = 1:Nphrase)])
|
model(xs)
|
||||||
|
Loading…
Reference in New Issue
Block a user