update translation model
This commit is contained in:
parent
10abb64f4b
commit
60b4e1c41c
@ -1,52 +1,50 @@
|
||||
# Based on https://arxiv.org/abs/1409.0473
|
||||
|
||||
using Flux
|
||||
using Flux: flip
|
||||
using Flux: flip, stateless, broadcastto, ∘
|
||||
|
||||
Nbatch = 3 # Number of phrases to batch together
|
||||
Nphrase = 5 # The length of (padded) phrases
|
||||
Nalpha = 7 # The size of the token vector
|
||||
Nhidden = 10 # The size of the hidden state
|
||||
|
||||
# A recurrent model which takes a token and returns a context-dependent
|
||||
# annotation.
|
||||
|
||||
@net type Encoder
|
||||
forward
|
||||
backward
|
||||
token -> hcat(forward(token), backward(token))
|
||||
end
|
||||
forward = LSTM(Nalpha, Nhidden÷2)
|
||||
backward = flip(LSTM(Nalpha, Nhidden÷2))
|
||||
encoder = @net token -> hcat(forward(token), backward(token))
|
||||
|
||||
Encoder(in::Integer, out::Integer) =
|
||||
Encoder(LSTM(in, out÷2), flip(LSTM(in, out÷2)))
|
||||
alignnet = Affine(2Nhidden, 1)
|
||||
align = @net (s, t) -> alignnet(hcat(broadcastto(s, (Nbatch, 1)), t))
|
||||
|
||||
# A recurrent model which takes a sequence of annotations, attends, and returns
|
||||
# a predicted output token.
|
||||
|
||||
@net type Decoder
|
||||
attend
|
||||
recur
|
||||
state; y; N
|
||||
function (anns)
|
||||
energies = map(ann -> exp(attend(hcat(state{-1}, ann))[1]), seq(anns, N))
|
||||
weights = energies./sum(energies)
|
||||
ctx = sum(map((α, ann) -> α .* ann, weights, anns))
|
||||
(_, state), y = recur((state{-1},y{-1}), ctx)
|
||||
y
|
||||
end
|
||||
recur = unroll1(LSTM(Nhidden, Nhidden)).model
|
||||
state = param(zeros(1, Nhidden))
|
||||
y = param(zeros(1, Nhidden))
|
||||
toalpha = Affine(Nhidden, Nalpha)
|
||||
|
||||
decoder = @net function (tokens)
|
||||
energies = map(token -> exp.(align(state{-1}, token)), tokens)
|
||||
weights = map(e -> e ./ sum(energies), energies)
|
||||
context = sum(map(∘, weights, tokens))
|
||||
(y, state), _ = recur((y{-1},state{-1}), context)
|
||||
return softmax(toalpha(y))
|
||||
end
|
||||
|
||||
Decoder(in::Integer, out::Integer; N = 1) =
|
||||
Decoder(Affine(in+out, 1),
|
||||
unroll1(LSTM(in, out)),
|
||||
param(zeros(1, out)), param(zeros(1, out)), N)
|
||||
# Building the full model
|
||||
|
||||
# The model
|
||||
a, b = rand(Nbatch, Nalpha), rand(Nbatch, Nalpha)
|
||||
|
||||
Nalpha = 5 # The size of the input token vector
|
||||
Nphrase = 7 # The length of (padded) phrases
|
||||
Nhidden = 12 # The size of the hidden state
|
||||
model = @Chain(
|
||||
stateless(unroll(encoder, Nphrase)),
|
||||
@net(x -> repeated(x, Nphrase)),
|
||||
stateless(unroll(decoder, Nphrase)))
|
||||
|
||||
encode = Encoder(Nalpha, Nhidden)
|
||||
decode = Chain(Decoder(Nhidden, Nhidden, N = Nphrase), Affine(Nhidden, Nalpha), softmax)
|
||||
model = mxnet(Flux.SeqModel(model, Nphrase))
|
||||
|
||||
model = Chain(
|
||||
unroll(encode, Nphrase, stateful = false),
|
||||
unroll(decode, Nphrase, stateful = false, seq = false))
|
||||
xs = Batch(Seq(rand(Nalpha) for i = 1:Nphrase) for i = 1:Nbatch)
|
||||
|
||||
xs = Batch([Seq(rand(Float32, Nalpha) for _ = 1:Nphrase)])
|
||||
model(xs)
|
||||
|
Loading…
Reference in New Issue
Block a user