Allow multidimensional inputs to batchnorm.
Can be used in conjunction with convolutional layers, in addition to dense layers, with the same api.
This commit is contained in:
parent
72f13834f5
commit
6653ec86d9
|
@ -106,6 +106,11 @@ BatchNorm(dims::Integer...; λ = identity,
|
|||
|
||||
function (BN::BatchNorm)(x)
|
||||
λ, γ, β = BN.λ, BN.γ, BN.β
|
||||
dims = length(size(x))
|
||||
channels = size(x, dims-1)
|
||||
affine_shape = ones(Int, dims)
|
||||
affine_shape[end-1] = channels
|
||||
m = prod(size(x)[1:end-2]) * size(x)[end]
|
||||
|
||||
if !BN.active
|
||||
μ = BN.μ
|
||||
|
@ -114,9 +119,9 @@ function (BN::BatchNorm)(x)
|
|||
T = eltype(x)
|
||||
|
||||
ϵ = data(convert(T, BN.ϵ))
|
||||
m = size(x, 2) # batch size
|
||||
μ = mean(x, 2)
|
||||
σ = sqrt.(sum((x .- μ).^2, 2) ./ m .+ ϵ)
|
||||
axes = [1:dims-2; dims] # axes to reduce along (all but channels axis)
|
||||
μ = mean(x, axes)
|
||||
σ = sqrt.(mean((x .- μ).^2, axes) .+ ϵ)
|
||||
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, BN.momentum))
|
||||
|
@ -124,7 +129,7 @@ function (BN::BatchNorm)(x)
|
|||
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* data(σ) .* m ./ (m - 1)
|
||||
end
|
||||
|
||||
λ.(γ .* ((x .- μ) ./ σ) .+ β)
|
||||
λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ σ) .+ reshape(β, affine_shape...))
|
||||
end
|
||||
|
||||
children(BN::BatchNorm) =
|
||||
|
|
|
@ -77,4 +77,10 @@ end
|
|||
x′ = m(x).data
|
||||
@test x′[1] ≈ σ((1 - 0.3) / 1.1449489742783179)
|
||||
end
|
||||
|
||||
let m = BatchNorm(2), x = param(reshape(1:12, 2, 2, 3))
|
||||
y = reshape(permutedims(x, [2, 1, 3]), 2, 6)
|
||||
y = permutedims(reshape(m(y), 2, 2, 3), [2, 1, 3])
|
||||
@test m(x) == y
|
||||
end
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue