added remaining optimizers and tests

This commit is contained in:
Dhairya Gandhi 2018-09-16 17:34:51 +05:30
parent 63bc71698b
commit 6665189ff1
5 changed files with 174 additions and 39 deletions

View File

@ -19,8 +19,9 @@ export Tracker, TrackedArray, TrackedVector, TrackedMatrix, param
include("optimise/Optimise.jl")
using .Optimise
using .Optimise: @epochs
export Descent, ADAM, Momentum, Nesterov,
RMSProp, update!
export Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
InvDecay, ExpDecay
include("utils.jl")
include("onehot.jl")

View File

@ -1,7 +1,9 @@
module Optimise
export train!,
Descent, ADAM, Momentum, Nesterov, RMSProp, stop, StopException
Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
InvDecay, ExpDecay, stop, StopException, Compose
include("optimisers.jl")
include("train.jl")

View File

@ -20,7 +20,7 @@ function update!(o::Descent, x, Δ)
end
"""
Momentum(params, η = 0.01; ρ = 0.9, decay = 0)
Momentum(params, η = 0.01; ρ = 0.9)
Gradient descent with learning rate `η` and momentum `ρ`.
"""
@ -83,7 +83,7 @@ function update!(o::RMSProp, x, Δ)
end
"""
ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
ADAM(η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08)
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
@ -105,36 +105,154 @@ function update!(o::ADAM, x, Δ)
return Δ
end
# """
# AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
#
# [AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on
# the ∞-norm.
# """
"""
AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08)
# """
# ADAGrad(params, η = 0.01; ϵ = 1e-8, decay = 0)
#
# [ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
# Parameters don't need tuning.
# """
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on
the -norm.
"""
mutable struct AdaMax
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict
end
# """
# ADADelta(params; ρ = 0.9, ϵ = 1e-8, decay = 0)
#
# [ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
# tuning.
# """
AdaMax(η = 0.001, β = (0.9, 0.999)) = AdaMax(η, β, IdDict())
# """
# AMSGrad(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
#
# [AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
# tuning.
# """
function update!(o::AdaMax, x, Δ)
η, β = o.eta, o.beta
mt, ut, βp = get!(o.state, x, (zero(x), zero(x), β))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. ut = max(β[2] * ut, abs(Δ))
@. Δ = (η/(1 - βp[1])) * mt/(ut + ϵ)
o.state[x] = (mt, ut, βp .* β)
return Δ
end
# struct Optimiser
# os::Vector{Any}
# end
"""
ADAGrad(η = 0.1; ϵ = 1e-8)
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
"""
mutable struct ADAGrad
eta::Float64
acc::IdDict
end
ADAGrad(η = 0.1) = ADAGrad(η, IdDict())
function update!(o::ADAGrad, x, Δ)
η = o.eta
acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(x)
@. acc += Δ^2
@. Δ *= η / (acc + ϵ)
end
"""
ADADelta(params; ρ = 0.9, ϵ = 1e-8)
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning.
"""
mutable struct ADADelta
rho::Float64
state::IdDict
end
ADADelta(ρ = 0.9) = ADADelta(ρ, IdDict())
function update!(o::ADADelta, x, Δ)
ρ = o.rho
acc, Δacc = get!(o.state, x, (zero(x), zero(x)))
@. acc = ρ * acc + (1 - ρ) * Δ^2
@. Δ *= (Δacc + ϵ) / (acc + ϵ)
@. Δacc = ρ * Δacc + (1 - ρ) * Δ^2
return Δ
end
"""
AMSGrad(η = 0.001, β = (0.9, 0.999))
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
tuning.
"""
mutable struct AMSGrad
eta::Float64
beta::Tuple{Float64, Float64}
state::IdDict
end
AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict())
function update!(o::AMSGrad, x, Δ)
η, β = o.eta, o.beta
mt, vt, v̂t = get!(o.state, x, (fill(ϵ, size(x)), fill(ϵ, size(x)), fill(ϵ, size(x))))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ ^ 2
@. v̂t = max.(v̂t, vt)
@. Δ = η * mt / v̂t
end
"""
NADAM(η = 0.001, β = (0.9, 0.999))
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser. Parameters don't need
tuning.
"""
mutable struct NADAM
eta::Float64
beta::Tuple{Float64, Float64}
state::IdDict
end
NADAM(η = 0.001, β = (0.9, 0.999)) = NADAM(η, β, IdDict())
function update!(o::NADAM, x, Δ)
η, β = o.eta, o.beta
β1p, β2p = o.beta
mt, vt = get!(o.state, x, (zero(x), zero(x)))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
@. Δ = (β[1] * mt / (1 - β[1] * β1p) + (1 - β[1]) * Δ / (1 - β1p)) / (vt * β[2] / (1 - β2p) + ϵ) * η
o.state[x] = (mt, vt, (β1p * β[1], β2p * β[2]))
return Δ
end
mutable struct Compose
os::Vector{Any}
end
function update!(o::Compose, x, Δ)
for opt in o.os
Δ = update!(opt, x, Δ)
end
return Δ
end
# TODO: decay
mutable struct InvDecay
gamma::Float64
n::Int64
end
InvDecay(γ = 0.001, n = 0) = InvDecay(γ, n)
function update!(o::InvDecay, x, Δ)
γ, n = o.gamma, o.n
Δ .*= 1 / (1 + γ * n)
o.n += 1
return Δ
end
mutable struct ExpDecay
gamma::Float64
end
ExpDecay(γ = 0.001) = ExpDecay(γ)
function update!(o::ExpDecay, x, Δ)
γ = o.gamma
@. Δ += γ * x
end

View File

@ -361,7 +361,7 @@ end
track(Call(back, tracker.(args)), y)
end
using Base.Broadcast: BroadcastStyle, ArrayStyle, Broadcasted, broadcasted, cat_nested
using Base.Broadcast: BroadcastStyle, ArrayStyle, Broadcasted, broadcasted
struct TrackedStyle <: BroadcastStyle end
@ -385,10 +385,6 @@ end
using Requires
Base.Broadcast.cat_nested(t::Base.Broadcast.Broadcasted, rest...) = (cat_nested(t.args...)..., cat_nested(rest...)...)
Base.Broadcast.cat_nested(t::Any, rest...) = (t, cat_nested(rest...)...)
Base.Broadcast.cat_nested() = ()
# https://github.com/FluxML/Flux.jl/issues/353
@init Requires.isprecompiling() || @eval Base.Broadcast begin
function flatten(bc::Broadcasted{Style}) where {Style}

View File

@ -3,13 +3,16 @@ using Flux.Tracker
using Test
@testset "Optimise" begin
w = randn(10, 10)
@testset for Opt in [Descent, ADAM, Nesterov, RMSProp, Momentum]
@testset for Opt in [ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, Descent, ADAM, Nesterov, RMSProp, Momentum]
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
opt = Opt(0.001)
if opt isa Descent
if opt isa Descent || opt isa ADAGrad
opt = Opt(0.1)
end
if opt isa ADADelta
opt = Opt(0.9)
end
for t = 1: 10^5
l = loss(rand(10))
back!(l)
@ -20,6 +23,21 @@ using Test
end
end
@testset "Compose" begin
w = randn(10, 10)
@testset for Opt in [InvDecay, ExpDecay]
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
opt = Compose(vec([Opt(), ADAM(0.001)]))
for t = 1:10^5
l = loss(rand(10))
back!(l)
delta = Optimise.update!(opt, w.data, w.grad)
w.data .-= delta
end
@test Flux.mse(w, w) < 0.01
end
@testset "Training Loop" begin
i = 0
l = param(1)