diff --git a/src/dims/seq.jl b/src/dims/seq.jl index 3b0d3d02..58ec76e3 100644 --- a/src/dims/seq.jl +++ b/src/dims/seq.jl @@ -17,4 +17,4 @@ convert{T,S}(::Type{Seq{T,S}},storage::S) = Juno.trim(collect(b))) end -typealias BatchSeq{T<:Seq} Batch{T} +BatchSeq{T<:Seq} = Batch{T} diff --git a/src/layers/shape.jl b/src/layers/shape.jl index 5fe47cd9..20c171cb 100644 --- a/src/layers/shape.jl +++ b/src/layers/shape.jl @@ -1,6 +1,6 @@ export Input -typealias Dims{N} NTuple{N,Int} +Dims{N} = NTuple{N,Int} dims(d::Dims) = d diff --git a/src/model.jl b/src/model.jl index d333d9b2..24b0424b 100644 --- a/src/model.jl +++ b/src/model.jl @@ -15,7 +15,7 @@ where `W` and `b` are a trainable matrix and vector of weights repectively. The closer to a protocol, and models don't need to inherit from this type. Normal Julia functions are models with 0 parameters, for example. """ -abstract Model +abstract type Model end """ back!(m::Model, ΔY, X...) => ΔX