build based on c764b74
This commit is contained in:
parent
503d0aef59
commit
684fc0cc11
@ -15,11 +15,11 @@ predict(x) = W*x .+ b
|
||||
loss(x, y) = sum((predict(x) .- y).^2)
|
||||
|
||||
x, y = cu(rand(5)), cu(rand(2)) # Dummy data
|
||||
loss(x, y) # ~ 3</code></pre><p>Note that we convert both the parameters (<code>W</code>, <code>b</code>) and the data set (<code>x</code>, <code>y</code>) to cuda arrays. Taking derivatives and training works exactly as before.</p><p>If you define a structured model, like a <code>Dense</code> layer or <code>Chain</code>, you just need to convert the internal parameters. Flux provides <code>fmap</code>, which allows you to alter all parameters of a model at once.</p><pre><code class="language-julia">d = Dense(10, 5, σ)
|
||||
d = fmap(cu, d)
|
||||
loss(x, y) # ~ 3</code></pre><p>Note that we convert both the parameters (<code>W</code>, <code>b</code>) and the data set (<code>x</code>, <code>y</code>) to cuda arrays. Taking derivatives and training works exactly as before.</p><p>If you define a structured model, like a <code>Dense</code> layer or <code>Chain</code>, you just need to convert the internal parameters. Flux provides <code>mapleaves</code>, which allows you to alter all parameters of a model at once.</p><pre><code class="language-julia">d = Dense(10, 5, σ)
|
||||
d = mapleaves(cu, d)
|
||||
d.W # Tracked CuArray
|
||||
d(cu(rand(10))) # CuArray output
|
||||
|
||||
m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
|
||||
m = fmap(cu, m)
|
||||
m = mapleaves(cu, m)
|
||||
d(cu(rand(10)))</code></pre><p>The <a href="https://github.com/FluxML/model-zoo/blob/master/mnist/mnist.jl">mnist example</a> contains the code needed to run the model on the GPU; just uncomment the lines after <code>using CuArrays</code>.</p><footer><hr/><a class="previous" href="data/onehot.html"><span class="direction">Previous</span><span class="title">One-Hot Encoding</span></a><a class="next" href="contributing.html"><span class="direction">Next</span><span class="title">Contributing & Help</span></a></footer></article></body></html>
|
||||
|
@ -11,4 +11,4 @@ m(5) == 26
|
||||
|
||||
m = Chain(Dense(10, 5), Dense(5, 2))
|
||||
x = rand(10)
|
||||
m(x) == m[2](m[1](x))</code></pre><p><code>Chain</code> also supports indexing and slicing, e.g. <code>m[2]</code> or <code>m[1:end-1]</code>. <code>m[1:3](x)</code> will calculate the output of the first three layers.</p></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/e02e3200082452142b2c52c7c1f69e368ad4cc7e/src/layers/basic.jl#L1-L16">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dense" href="#Flux.Dense"><code>Flux.Dense</code></a> — <span class="docstring-category">Type</span>.</div><div><pre><code class="language-none">Dense(in::Integer, out::Integer, σ = identity)</code></pre><p>Creates a traditional <code>Dense</code> layer with parameters <code>W</code> and <code>b</code>.</p><pre><code class="language-none">y = σ.(W * x .+ b)</code></pre><p>The input <code>x</code> must be a vector of length <code>in</code>, or a batch of vectors represented as an <code>in × N</code> matrix. The out <code>y</code> will be a vector or batch of length <code>in</code>.</p></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/e02e3200082452142b2c52c7c1f69e368ad4cc7e/src/layers/basic.jl#L38-L47">source</a></section><footer><hr/><a class="previous" href="recurrence.html"><span class="direction">Previous</span><span class="title">Recurrence</span></a><a class="next" href="../training/optimisers.html"><span class="direction">Next</span><span class="title">Optimisers</span></a></footer></article></body></html>
|
||||
m(x) == m[2](m[1](x))</code></pre><p><code>Chain</code> also supports indexing and slicing, e.g. <code>m[2]</code> or <code>m[1:end-1]</code>. <code>m[1:3](x)</code> will calculate the output of the first three layers.</p></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/c764b74ebaeded69d6d6d94b18a9ee4b810d8c02/src/layers/basic.jl#L1-L16">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dense" href="#Flux.Dense"><code>Flux.Dense</code></a> — <span class="docstring-category">Type</span>.</div><div><pre><code class="language-none">Dense(in::Integer, out::Integer, σ = identity)</code></pre><p>Creates a traditional <code>Dense</code> layer with parameters <code>W</code> and <code>b</code>.</p><pre><code class="language-none">y = σ.(W * x .+ b)</code></pre><p>The input <code>x</code> must be a vector of length <code>in</code>, or a batch of vectors represented as an <code>in × N</code> matrix. The out <code>y</code> will be a vector or batch of length <code>in</code>.</p></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/c764b74ebaeded69d6d6d94b18a9ee4b810d8c02/src/layers/basic.jl#L38-L47">source</a></section><footer><hr/><a class="previous" href="recurrence.html"><span class="direction">Previous</span><span class="title">Recurrence</span></a><a class="next" href="../training/optimisers.html"><span class="direction">Next</span><span class="title">Optimisers</span></a></footer></article></body></html>
|
||||
|
@ -237,7 +237,7 @@ var documenterSearchIndex = {"docs": [
|
||||
"page": "GPU Support",
|
||||
"title": "GPU Support",
|
||||
"category": "section",
|
||||
"text": "Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn't care what array type you use, so we can just plug these in without any other changes.For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.using CuArrays\n\nW = cu(rand(2, 5)) # a 2×5 CuArray\nb = cu(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = cu(rand(5)), cu(rand(2)) # Dummy data\nloss(x, y) # ~ 3Note that we convert both the parameters (W, b) and the data set (x, y) to cuda arrays. Taking derivatives and training works exactly as before.If you define a structured model, like a Dense layer or Chain, you just need to convert the internal parameters. Flux provides fmap, which allows you to alter all parameters of a model at once.d = Dense(10, 5, σ)\nd = fmap(cu, d)\nd.W # Tracked CuArray\nd(cu(rand(10))) # CuArray output\n\nm = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)\nm = fmap(cu, m)\nd(cu(rand(10)))The mnist example contains the code needed to run the model on the GPU; just uncomment the lines after using CuArrays."
|
||||
"text": "Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn't care what array type you use, so we can just plug these in without any other changes.For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.using CuArrays\n\nW = cu(rand(2, 5)) # a 2×5 CuArray\nb = cu(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = cu(rand(5)), cu(rand(2)) # Dummy data\nloss(x, y) # ~ 3Note that we convert both the parameters (W, b) and the data set (x, y) to cuda arrays. Taking derivatives and training works exactly as before.If you define a structured model, like a Dense layer or Chain, you just need to convert the internal parameters. Flux provides mapleaves, which allows you to alter all parameters of a model at once.d = Dense(10, 5, σ)\nd = mapleaves(cu, d)\nd.W # Tracked CuArray\nd(cu(rand(10))) # CuArray output\n\nm = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)\nm = mapleaves(cu, m)\nd(cu(rand(10)))The mnist example contains the code needed to run the model on the GPU; just uncomment the lines after using CuArrays."
|
||||
},
|
||||
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user