Merge pull request #696 from shreyas-kowshik/group_norm_patch

Added GroupNorm Layer
This commit is contained in:
Elliot Saba 2019-03-29 16:35:51 -07:00 committed by GitHub
commit 7418a2d7d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 219 additions and 4 deletions

View File

@ -6,10 +6,8 @@ using Base: tail
using MacroTools, Juno, Requires, Reexport, Statistics, Random
using MacroTools: @forward
export Chain, Dense, Maxout,
RNN, LSTM, GRU,
Conv, ConvTranspose, MaxPool, MeanPool, DepthwiseConv,
Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm,
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm,
params, mapleaves, cpu, gpu, f32, f64
@reexport using NNlib

View File

@ -286,3 +286,109 @@ function Base.show(io::IO, l::InstanceNorm)
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end
"""
Group Normalization.
This layer can outperform Batch-Normalization and Instance-Normalization.
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i),
ϵ = 1f-5, momentum = 0.1f0)
``chs`` is the number of channels, the channel dimension of your input.
For an array of N dimensions, the (N-1)th index is the channel dimension.
``G`` is the number of groups along which the statistics would be computed.
The number of channels must be an integer multiple of the number of groups.
Example:
```
m = Chain(Conv((3,3), 1=>32, leakyrelu;pad = 1),
GroupNorm(32,16)) # 32 channels, 16 groups (G = 16), thus 2 channels per group used
```
Link : https://arxiv.org/pdf/1803.08494.pdf
"""
mutable struct GroupNorm{F,V,W,N,T}
G::T # number of groups
λ::F # activation function
β::V # bias
γ::V # scale
μ::W # moving mean
σ²::W # moving std
ϵ::N
momentum::N
active::Bool
end
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
GroupNorm(G, λ, param(initβ(chs)), param(initγ(chs)),
zeros(G,1), ones(G,1), ϵ, momentum, true)
function(gn::GroupNorm)(x)
size(x,ndims(x)-1) == length(gn.β) || error("Group Norm expected $(length(gn.β)) channels, but got $(size(x,ndims(x)-1)) channels")
ndims(x) > 2 || error("Need to pass at least 3 channels for Group Norm to work")
(size(x,ndims(x) -1))%gn.G == 0 || error("The number of groups ($(gn.G)) must divide the number of channels ($(size(x,ndims(x) -1)))")
dims = length(size(x))
groups = gn.G
channels = size(x, dims-1)
batches = size(x,dims)
channels_per_group = div(channels,groups)
affine_shape = ones(Int, dims)
# Output reshaped to (W,H...,C/G,G,N)
affine_shape[end-1] = channels
μ_affine_shape = ones(Int,dims + 1)
μ_affine_shape[end-1] = groups
m = prod(size(x)[1:end-2]) * channels_per_group
γ = reshape(gn.γ, affine_shape...)
β = reshape(gn.β, affine_shape...)
y = reshape(x,((size(x))[1:end-2]...,channels_per_group,groups,batches))
if !gn.active
og_shape = size(x)
μ = reshape(gn.μ, μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
σ² = reshape(gn.σ², μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
ϵ = gn.ϵ
else
T = eltype(x)
og_shape = size(x)
axes = [(1:ndims(y)-2)...] # axes to reduce along (all but channels axis)
μ = mean(y, dims = axes)
σ² = mean((y .- μ) .^ 2, dims = axes)
ϵ = data(convert(T, gn.ϵ))
# update moving mean/std
mtm = data(convert(T, gn.momentum))
gn.μ = mean((1 - mtm) .* gn.μ .+ mtm .* reshape(data(μ), (groups,batches)),dims=2)
gn.σ² = mean((1 - mtm) .* gn.σ² .+ (mtm * m / (m - 1)) .* reshape(data(σ²), (groups,batches)),dims=2)
end
let λ = gn.λ
= (y .- μ) ./ sqrt.(σ² .+ ϵ)
# Reshape x̂
= reshape(,og_shape)
λ.(γ .* .+ β)
end
end
children(gn::GroupNorm) =
(gn.λ, gn.β, gn.γ, gn.μ, gn.σ², gn.ϵ, gn.momentum, gn.active)
mapchildren(f, gn::GroupNorm) = # e.g. mapchildren(cu, BN)
GroupNorm(gn,G,gn.λ, f(gn.β), f(gn.γ), f(gn.μ), f(gn.σ²), gn.ϵ, gn.momentum, gn.active)
_testmode!(gn::GroupNorm, test) = (gn.active = !test)
function Base.show(io::IO, l::GroupNorm)
print(io, "GroupNorm($(join(size(l.β), ", "))")
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end

View File

@ -200,3 +200,114 @@ end
end
end
@testset "GroupNorm" begin
# begin tests
squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions
let m = GroupNorm(4,2), sizes = (3,4,2),
x = param(reshape(collect(1:prod(sizes)), sizes))
@test m.β.data == [0, 0, 0, 0] # initβ(32)
@test m.γ.data == [1, 1, 1, 1] # initγ(32)
@test m.active
m(x)
#julia> x
#[:, :, 1] =
# 1.0 4.0 7.0 10.0
# 2.0 5.0 8.0 11.0
# 3.0 6.0 9.0 12.0
#
#[:, :, 2] =
# 13.0 16.0 19.0 22.0
# 14.0 17.0 20.0 23.0
# 15.0 18.0 21.0 24.0
#
# μ will be
# (1. + 2. + 3. + 4. + 5. + 6.) / 6 = 3.5
# (7. + 8. + 9. + 10. + 11. + 12.) / 6 = 9.5
#
# (13. + 14. + 15. + 16. + 17. + 18.) / 6 = 15.5
# (19. + 20. + 21. + 22. + 23. + 24.) / 6 = 21.5
#
# μ =
# 3.5 15.5
# 9.5 21.5
#
# ∴ update rule with momentum:
# (1. - .1) * 0 + .1 * (3.5 + 15.5) / 2 = 0.95
# (1. - .1) * 0 + .1 * (9.5 + 21.5) / 2 = 1.55
@test m.μ [0.95, 1.55]
# julia> mean(var(reshape(x,3,2,2,2),dims=(1,2)).* .1,dims=2) .+ .9*1.
# 2-element Array{Tracker.TrackedReal{Float64},1}:
# 1.25
# 1.25
@test m.σ² mean(squeeze(var(reshape(x,3,2,2,2),dims=(1,2))).*.1,dims=2) .+ .9*1.
testmode!(m)
@test !m.active
x = m(x).data
println(x[1])
@test isapprox(x[1], (1 - 0.95) / sqrt(1.25 + 1f-5), atol = 1.0e-5)
end
# with activation function
let m = GroupNorm(4,2, sigmoid), sizes = (3, 4, 2),
x = param(reshape(collect(1:prod(sizes)), sizes))
μ_affine_shape = ones(Int,length(sizes) + 1)
μ_affine_shape[end-1] = 2 # Number of groups
affine_shape = ones(Int,length(sizes) + 1)
affine_shape[end-2] = 2 # Channels per group
affine_shape[end-1] = 2 # Number of groups
affine_shape[1] = sizes[1]
affine_shape[end] = sizes[end]
og_shape = size(x)
@test m.active
m(x)
testmode!(m)
@test !m.active
y = m(x)
x_ = reshape(x,affine_shape...)
out = reshape(data(sigmoid.((x_ .- reshape(m.μ,μ_affine_shape...)) ./ sqrt.(reshape(m.σ²,μ_affine_shape...) .+ m.ϵ))),og_shape)
@test isapprox(y, out, atol = 1.0e-7)
end
let m = GroupNorm(2,2), sizes = (2, 4, 1, 2, 3),
x = param(reshape(collect(1:prod(sizes)), sizes))
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
y = reshape(m(y), sizes...)
@test m(x) == y
end
# check that μ, σ², and the output are the correct size for higher rank tensors
let m = GroupNorm(4,2), sizes = (5, 5, 3, 4, 4, 6),
x = param(reshape(collect(1:prod(sizes)), sizes))
y = m(x)
@test size(m.μ) == (m.G,1)
@test size(m.σ²) == (m.G,1)
@test size(y) == sizes
end
# show that group norm is the same as instance norm when the group size is the same as the number of channels
let IN = InstanceNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,5),
x = param(reshape(collect(1:prod(sizes)), sizes))
@test IN(x) GN(x)
end
# show that group norm is the same as batch norm for a group of size 1 and batch of size 1
let BN = BatchNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,1),
x = param(reshape(collect(1:prod(sizes)), sizes))
@test BN(x) GN(x)
end
end