optimiser docs

This commit is contained in:
Mike J Innes 2017-10-18 12:07:43 +01:00
parent b26f77489e
commit 7426faf37d
3 changed files with 76 additions and 8 deletions

View File

@ -52,3 +52,15 @@ opt()
```
An optimiser takes a parameter list and returns a function that does the same thing as `update` above. We can pass either `opt` or `update` to our [training loop](training.md), which will then run the optimiser after every mini-batch of data.
## Optimiser Reference
```@docs
SGD
Momentum
Nesterov
RMSProp
ADAM
ADAGrad
ADADelta
```

View File

@ -8,7 +8,8 @@ using Juno, Requires
using Lazy: @forward
export Chain, Dense, RNN, LSTM,
SGD, param, params, mapleaves
SGD, ADAM, Momentum, Nesterov, RMSProp, ADAGrad, ADADelta,
param, params, mapleaves
using NNlib
export σ, relu, softmax

View File

@ -9,10 +9,65 @@ function optimiser(ps, fs...)
() -> foreach(call, fs)
end
SGD(ps, η = 1) = optimiser(ps, p -> descent(p, η))
ADAM(ps, η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0.0) = optimiser(ps, p -> adam(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
Momentum(ps,ρ, decay = 0.0) = optimiser(ps, p -> momentum(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
Nesterov(ps,ρ, decay = 0.0) = optimiser(ps, p -> nesterov(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
RMSProp(ps, η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0.0) = optimiser(ps, p -> rmsprop(p; η = η, ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
ADAGrad(ps, η = 0.01, ϵ = 1e-8, decay = 0.0) = optimiser(ps, p -> adagrad(p; η = η, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
ADADelta(ps, η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0.0) = optimiser(ps, p -> adadelta(p; ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
SGD(params, η = 1; decay = 0)
Classic gradient descent optimiser. For each parameter `p` and its
gradient `δp`, this runs `p -= η*δp`.
Supports decayed learning rate decay if the `decay` argument is provided.
"""
SGD(ps, η = 1; decay = 0) =
optimiser(ps, p -> invdecay(p, decay), p -> descent(p, η))
"""
Momentum(params, ρ, decay = 0)
SGD with momentum `ρ` and optional learning rate decay.
"""
Momentum(ps, ρ; decay = 0) =
optimiser(ps, p -> momentum(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
Nesterov(params, ρ, decay = 0)
SGD with Nesterov momentum `ρ` and optional learning rate decay.
"""
Nesterov(ps, ρ; decay = 0) =
optimiser(ps, p -> nesterov(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
RMSProp(params; η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0)
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
optimiser. Parameters other than learning rate don't need tuning. Often a good
choice for recurrent networks.
"""
RMSProp(ps; η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> rmsprop(p; η = η, ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
ADAM(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
ADAM(ps; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
optimiser(ps, p -> adam(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
ADAGrad(params; η = 0.01, ϵ = 1e-8, decay = 0)
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
"""
ADAGrad(ps; η = 0.01, ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> adagrad(p; η = η, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
"""
ADADelta(params; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0)
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning.
"""
ADADelta(ps; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> adadelta(p; ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))