diff --git a/.travis.yml b/.travis.yml index 4f8acced..c2eb9ae0 100644 --- a/.travis.yml +++ b/.travis.yml @@ -6,6 +6,7 @@ os: # - osx julia: + - 1.0 - 1.2 - 1.3 - nightly diff --git a/Manifest.toml b/Manifest.toml index f5a589fd..be9bf768 100644 --- a/Manifest.toml +++ b/Manifest.toml @@ -1,5 +1,3 @@ -# This file is machine-generated - editing it directly is not advised - [[AbstractFFTs]] deps = ["LinearAlgebra"] git-tree-sha1 = "380e36c66edfa099cd90116b24c1ce8cafccac40" @@ -38,29 +36,23 @@ git-tree-sha1 = "62847acab40e6855a9b5905ccb99c2b5cf6b3ebb" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.2.0" -[[CSTParser]] -deps = ["Tokenize"] -git-tree-sha1 = "99dda94f5af21a4565dc2b97edf6a95485f116c3" -uuid = "00ebfdb7-1f24-5e51-bd34-a7502290713f" -version = "1.0.0" - [[CUDAapi]] deps = ["Libdl", "Logging"] -git-tree-sha1 = "e063efb91cfefd7e6afd92c435d01398107a500b" +git-tree-sha1 = "6eee47385c81ed3b3f716b745697869c712c2df3" uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3" -version = "1.2.0" +version = "2.0.0" [[CUDAdrv]] -deps = ["CEnum", "Printf"] -git-tree-sha1 = "96eabc95ebb83e361311330ffb574a3e2df73251" +deps = ["CEnum", "CUDAapi", "Printf"] +git-tree-sha1 = "0f39fddace3324707469ace7fbcbc7b28d5cf921" uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde" -version = "4.0.2" +version = "4.0.4" [[CUDAnative]] deps = ["Adapt", "CEnum", "CUDAapi", "CUDAdrv", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "Printf", "TimerOutputs"] -git-tree-sha1 = "dd642afe5fd6633663a8c3d42f3b7638f2210b79" +git-tree-sha1 = "93f6c917ab2a9b5bb54f8f738f4ec1a6693cb716" uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17" -version = "2.5.3" +version = "2.5.5" [[CodecZlib]] deps = ["BinaryProvider", "Libdl", "TranscodingStreams"] @@ -98,17 +90,13 @@ git-tree-sha1 = "9a11d428dcdc425072af4aea19ab1e8c3e01c032" uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d" version = "1.3.0" -[[Crayons]] -deps = ["Test"] -git-tree-sha1 = "f621b8ef51fd2004c7cf157ea47f027fdeac5523" -uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" -version = "4.0.0" - [[CuArrays]] deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Printf", "Random", "Requires", "SparseArrays", "TimerOutputs"] -git-tree-sha1 = "bc94d6cb335d418088f12641751aab63ff56509d" +git-tree-sha1 = "7e00178b18672ee2cf37244ac2a273b6b0701b04" +repo-rev = "master" +repo-url = "https://github.com/JuliaGPU/CuArrays.jl.git" uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae" -version = "1.4.2" +version = "1.4.7" [[DataAPI]] git-tree-sha1 = "674b67f344687a88310213ddfa8a2b3c76cc4252" @@ -117,9 +105,9 @@ version = "1.1.0" [[DataStructures]] deps = ["InteractiveUtils", "OrderedCollections"] -git-tree-sha1 = "1fe8fad5fc84686dcbc674aa255bc867a64f8132" +git-tree-sha1 = "a1b652fb77ae8ca7ea328fa7ba5aa151036e5c10" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" -version = "0.17.5" +version = "0.17.6" [[Dates]] deps = ["Printf"] @@ -136,13 +124,13 @@ uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" version = "0.0.4" [[DiffRules]] -deps = ["Random", "Test"] -git-tree-sha1 = "dc0869fb2f5b23466b32ea799bd82c76480167f7" +deps = ["NaNMath", "Random", "SpecialFunctions"] +git-tree-sha1 = "f734b5f6bc9c909027ef99f6d91d5d9e4b111eed" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" -version = "0.0.10" +version = "0.1.0" [[Distributed]] -deps = ["Random", "Serialization", "Sockets"] +deps = ["LinearAlgebra", "Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[FFTW]] @@ -153,9 +141,9 @@ version = "1.0.1" [[FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays"] -git-tree-sha1 = "6827a8f73ff12707f209c920d204238a16892b55" +git-tree-sha1 = "1a9fe4e1323f38de0ba4da49eafd15b25ec62298" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" -version = "0.8.0" +version = "0.8.2" [[FixedPointNumbers]] git-tree-sha1 = "d14a6fa5890ea3a7e5dcab6811114f132fec2b4b" @@ -164,9 +152,9 @@ version = "0.6.1" [[ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"] -git-tree-sha1 = "adf88d6da1f0294058f38295becf8807986bb7d0" +git-tree-sha1 = "da46ac97b17793eba44ff366dc6cb70f1238a738" uuid = "f6369f11-7733-5829-9624-2563aa707210" -version = "0.10.5" +version = "0.10.7" [[GPUArrays]] deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"] @@ -181,7 +169,7 @@ uuid = "7869d1d1-7146-5819-86e3-90919afe41df" version = "0.3.0" [[InteractiveUtils]] -deps = ["Markdown"] +deps = ["LinearAlgebra", "Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[JSON]] @@ -216,10 +204,10 @@ uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MacroTools]] -deps = ["CSTParser", "Compat", "DataStructures", "Test", "Tokenize"] -git-tree-sha1 = "d6e9dedb8c92c3465575442da456aec15a89ff76" +deps = ["Compat", "DataStructures", "Test"] +git-tree-sha1 = "82921f0e3bde6aebb8e524efc20f4042373c0c06" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" -version = "0.5.1" +version = "0.5.2" [[Markdown]] deps = ["Base64"] @@ -247,10 +235,9 @@ uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" version = "0.6.0" [[NaNMath]] -deps = ["Compat"] -git-tree-sha1 = "ce3b85e484a5d4c71dd5316215069311135fa9f2" +git-tree-sha1 = "928b8ca9b2791081dc71a51c55347c27c618760f" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" -version = "0.3.2" +version = "0.3.3" [[OrderedCollections]] deps = ["Random", "Serialization", "Test"] @@ -260,12 +247,12 @@ version = "1.1.0" [[Parsers]] deps = ["Dates", "Test"] -git-tree-sha1 = "c56ecb484f286639f161e712b8311f5ab77e8d32" +git-tree-sha1 = "0139ba59ce9bc680e2925aec5b7db79065d60556" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" -version = "0.3.8" +version = "0.3.10" [[Pkg]] -deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] +deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[Printf]] @@ -327,9 +314,9 @@ version = "0.8.0" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] -git-tree-sha1 = "1e9c5d89cba8047d518f1ffef432906ef1a3e8bd" +git-tree-sha1 = "5a3bcb6233adabde68ebc97be66e95dcb787424c" uuid = "90137ffa-7385-5640-81b9-e52037218182" -version = "0.12.0" +version = "0.12.1" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] @@ -346,15 +333,10 @@ deps = ["Distributed", "InteractiveUtils", "Logging", "Random"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[TimerOutputs]] -deps = ["Crayons", "Printf", "Test", "Unicode"] -git-tree-sha1 = "b80671c06f8f8bae08c55d67b5ce292c5ae2660c" +deps = ["Printf"] +git-tree-sha1 = "311765af81bbb48d7bad01fb016d9c328c6ede03" uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" -version = "0.5.0" - -[[Tokenize]] -git-tree-sha1 = "dfcdbbfb2d0370716c815cbd6f8a364efb6f42cf" -uuid = "0796e94c-ce3b-5d07-9a54-7f471281c624" -version = "0.5.6" +version = "0.5.3" [[TranscodingStreams]] deps = ["Random", "Test"] @@ -369,7 +351,7 @@ uuid = "30578b45-9adc-5946-b283-645ec420af67" version = "0.4.0" [[UUIDs]] -deps = ["Random", "SHA"] +deps = ["Random"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] @@ -389,9 +371,9 @@ version = "0.8.3" [[Zygote]] deps = ["DiffRules", "FFTW", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"] -git-tree-sha1 = "b2e42a21dc3d1ecd3cbe8c83a454ca56fbf423c4" +git-tree-sha1 = "e4245b9c5362346e154b62842a89a18e0210b92b" uuid = "e88e6eb3-aa80-5325-afca-941959d7151f" -version = "0.4.0" +version = "0.4.1" [[ZygoteRules]] deps = ["MacroTools"] diff --git a/NEWS.md b/NEWS.md index 26853df3..4023c7f2 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,16 @@ +# v0.10.0 +* The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669) + - The dependency on Tracker.jl has been removed. + - This means Flux now does not depend on using a specialised `TrackedArray` type, and can be used with normal Array implementations directly. + - Tracker compatibility is maintained in most common cases, but Zygote will be the preferred AD backend for Flux from now on. +* The CUDNN wrappers have been [moved from Flux into CuArrays](https://github.com/FluxML/Flux.jl/pull/874), to allow for better supporting the CUDA backend, and improve user experience, not to mention making Flux lean. +* `*crossentropy` functions now [work as expected with CuArrays](https://github.com/FluxML/Flux.jl/pull/926). [PR for binarycrossentropy](https://github.com/FluxML/Flux.jl/pull/940). +* Added [clearer docs](https://github.com/FluxML/Flux.jl/pull/904) around training and the Optimiser interface. +* [Layer initialisations](https://github.com/FluxML/Flux.jl/pull/937) have been improved with a clearer API on how to extend it for other purposes. +* [Better messaging around CUDA availability](https://github.com/FluxML/Flux.jl/pull/924), with hooks to initialize the GPU as default where possible. +* `@treelike` has been formalised as a [functor](https://github.com/FluxML/Flux.jl/pull/865), with an effective deprecation. +* `testmode!` is deprecated in favour of [istraining](https://github.com/FluxML/Flux.jl/pull/669) + # v0.9.0 * [Depthwise convolutional layer API changes](https://github.com/FluxML/Flux.jl/pull/756) from `in => mult` channel specification to `in => out` channel specification, and deprecates implicit `out` constructor. * New [SkipConnection](https://github.com/FluxML/Flux.jl/pull/446), which can be used to train residual neural network architectures. diff --git a/Project.toml b/Project.toml index 587a459b..225cc463 100644 --- a/Project.toml +++ b/Project.toml @@ -1,11 +1,10 @@ name = "Flux" uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c" -version = "0.9.0" +version = "0.10.0" [deps] AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" -CUDAdrv = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde" CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193" Colors = "5ae59095-9a9b-59fe-a467-6f913c188581" CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae" @@ -25,9 +24,17 @@ ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [compat] -CUDAdrv = "4.0.1" -CuArrays = "1.4.2" +AbstractTrees = "0.2" +Adapt = "1" +CodecZlib = "0.5, 0.6" +Colors = "0.8, 0.9" +CuArrays = "1.4.3" +Juno = "0.5, 0.6, 0.7" +MacroTools = "0.3, 0.4, 0.5" NNlib = "0.6" +Reexport = "0.2" +StatsBase = "0" +ZipFile = "0.7, 0.8" Zygote = "0.4" julia = "1" diff --git a/README.md b/README.md index d8af28ae..ef090f5b 100644 --- a/README.md +++ b/README.md @@ -7,93 +7,9 @@ Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. ```julia -julia> Pkg.add("Flux") +] add Flux ``` See the [documentation](https://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples. -If you use Flux in research, please cite the following paper: - -``` -@article{innes:2018, - author = {Mike Innes}, - title = {Flux: Elegant Machine Learning with Julia}, - journal = {Journal of Open Source Software}, - year = {2018}, - doi = {10.21105/joss.00602}, -} -``` - -## Features - -Flux has powerful high-level features, and common architectures can be defined in a few lines. - -```julia -model = Chain( - Dense(768, 128, σ), - LSTM(128, 256), - LSTM(256, 128), - Dense(128, 10), - softmax) - -loss(x, y) = crossentropy(model(x), y) - -Flux.train!(loss, params(model), data, ADAM(...)) -``` - -Yet you can easily strip away the layers, and directly write the mathematics for your problem. Flux will seamlessly take gradients of any Julia code, so your model looks just like the paper. - -```julia -W = param(randn(2, 10)) -b = param(randn(2)) - -y(x) = σ.(W * x .+ b) -``` - -If that's *still* not enough, you can go as deep as you want, even writing your own CUDA kernels with [CUDAnative](https://github.com/JuliaGPU/CUDAnative.jl)! All this can be freely mixed-and-matched in a single model or script, and it all runs interactively via Jupyter or Juno. - -```julia -function gpu_add(a, b, c) - i = (blockIdx().x-1) * blockDim().x + threadIdx().x - c[i] = a[i] + b[i] - return nothing -end -``` - -Unusual architectures are no problem in Flux, as you can use all the loops, control flow and even macros that you're used to. Here's a Tree RNN in 4 lines. - -```julia -tree() = rand() < 0.5 ? rand(10) : (tree(), tree()) # dummy data - -shrink = Dense(20, 10) -combine(a, b) = shrink([a; b]) - -model(x) = x -model(x::Tuple) = combine(model(x[1]), model(x[2])) - -model(tree()) # Sample output -``` - -Despite this flexibility, Julia's advanced compiler lets us do some powerful optimisations. For example, this definition of `sigmoid` automatically gets fused into a *single* GPU kernel – so it's really fast. - -```julia -sigmoid(xs) = 1 ./ (1 .+ exp.(.-xs)) -``` - -Similarly, Flux is the first dynamic framework to support [compiling to the browser](https://fluxml.github.io/experiments/) and model import via [formats like ONNX](https://github.com/FluxML/ONNX.jl/), both of which are thinly-veiled compiler problems. - -For more on our philosophy on machine learning, check out our article [On Machine Learning & Programming Languages](https://julialang.org/blog/2017/12/ml&pl). - -## Contributing & Help - -For general questions and help, check out Julia's [community forum](https://discourse.julialang.org/c/domain/ML). - -Flux development is carried out via our [GitHub issues](https://github.com/FluxML/Flux.jl/issues), so feel free to open feature requests or PRs here. - -For more informal discussions we'd love to have you on the [Julia slack](https://slackinvite.julialang.org/), where we hang out on the #machine-learning channel. - -## Related Packages - -Check out [Metalhead.jl](https://github.com/FluxML/Metalhead.jl) for common computer vision datasets and trained models. - -[MLDatasets.jl](https://github.com/JuliaML/MLDatasets.jl) provides further common datasets. +If you use Flux in research, please see [our papers](CITATION.bib) for appropriate citations. diff --git a/docs/src/training/training.md b/docs/src/training/training.md index 679bbd0b..47bda1f5 100644 --- a/docs/src/training/training.md +++ b/docs/src/training/training.md @@ -1,8 +1,9 @@ # Training -To actually train a model we need three things: +To actually train a model we need four things: * A *objective function*, that evaluates how well a model is doing given some input data. +* The trainable parameters of the model. * A collection of data points that will be provided to the objective function. * An [optimiser](optimisers.md) that will update the model parameters appropriately. @@ -32,6 +33,14 @@ Flux.train!(loss, ps, data, opt) The objective will almost always be defined in terms of some *cost function* that measures the distance of the prediction `m(x)` from the target `y`. Flux has several of these built in, like `mse` for mean squared error or `crossentropy` for cross entropy loss, but you can calculate it however you want. +At first glance it may seem strange that the model that we want to train is not part of the input arguments of `Flux.train!` too. However the target of the optimizer is not the model itself, but the objective function that represents the departure between modelled and observed data. In other words, the model is implicitly defined in the objective function, and there is no need to give it explicitly. Passing the objective function instead of the model and a cost function separately provides more flexibility, and the possibility of optimizing the calculations. + +## Model parameters + +The model to be trained must have a set of tracked parameters that are used to calculate the gradients of the objective function. In the [basics](../models/basics.md) section it is explained how to create models with such parameters. The second argument of the function `Flux.train!` must be an object containing those parameters, which can be obtained from a model `m` as `params(m)`. + +Such an object contains a reference to the model's parameters, not a copy, such that after their training, the model behaves according to their updated values. + ## Datasets The `data` argument provides a collection of data to train with (usually a set of inputs `x` and target outputs `y`). For example, here's a dummy data set with only one data point: diff --git a/src/Flux.jl b/src/Flux.jl index 12567aa5..6be90201 100644 --- a/src/Flux.jl +++ b/src/Flux.jl @@ -6,7 +6,7 @@ using Base: tail using Zygote, MacroTools, Juno, Reexport, Statistics, Random using MacroTools: @forward @reexport using NNlib -using Zygote: Params, @adjoint, gradient, pullback +using Zygote: Params, @adjoint, gradient, pullback, @nograd export gradient export Chain, Dense, Maxout, RNN, LSTM, GRU, SamePad, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool, @@ -21,8 +21,7 @@ export SGD, Descent, ADAM, Momentum, Nesterov, RMSProp, ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay -ENV["CUDA_INIT_SILENT"] = true -using CUDAdrv, CuArrays +using CuArrays const use_cuda = Ref(false) include("utils.jl") @@ -40,12 +39,14 @@ include("data/Data.jl") include("deprecations.jl") function __init__() - if !CUDAdrv.functional() - @warn "CUDA available, but CUDAdrv.jl failed to load" - elseif length(devices()) == 0 - @warn "CUDA available, but no GPU detected" - elseif !CuArrays.functional() - @warn "CUDA GPU available, but CuArrays.jl failed to load" + precompiling = ccall(:jl_generating_output, Cint, ()) != 0 + + # we don't want to include the CUDA module when precompiling, + # or we could end up replacing it at run time (triggering a warning) + precompiling && return + + if !CuArrays.functional() + # nothing to do here, and either CuArrays or one of its dependencies will have warned else use_cuda[] = true @@ -54,7 +55,7 @@ function __init__() if CuArrays.has_cudnn() include(joinpath(@__DIR__, "cuda/cuda.jl")) else - @warn "CUDA GPU available, but CuArrays.jl did not find libcudnn. Some functionality will not be available." + @warn "CuArrays.jl did not find libcudnn. Some functionality will not be available." end end end diff --git a/src/layers/basic.jl b/src/layers/basic.jl index f42a9619..2a465208 100644 --- a/src/layers/basic.jl +++ b/src/layers/basic.jl @@ -44,19 +44,23 @@ end # it might be replaced in the future for better performance # see issue https://github.com/FluxML/Flux.jl/issues/702 # Johnny Chen -- @johnnychen94 +# only slightly changed to better handle interaction with Zygote @dsweber2 """ activations(c::Chain, input) Calculate the forward results of each layers in Chain `c` with `input` as model input. """ function activations(c::Chain, input) - rst = [] - for l in c - x = get(rst, length(rst), input) - push!(rst, l(x)) - end - return rst + extraChain(c.layers, input) end +function extraChain(fs::Tuple, x) + res = first(fs)(x) + return (res, extraChain(Base.tail(fs), res)...) +end + +extraChain(::Tuple{}, x) = () + + """ Dense(in::Integer, out::Integer, σ = identity) diff --git a/src/layers/conv.jl b/src/layers/conv.jl index 58a913da..f7c7fff1 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -144,6 +144,9 @@ function conv_transpose_dims(c::ConvTranspose, x::AbstractArray) ) end +# TODO: Find proper fix for https://github.com/FluxML/Flux.jl/issues/900 +@nograd conv_transpose_dims + function (c::ConvTranspose)(x::AbstractArray) # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) diff --git a/src/layers/stateless.jl b/src/layers/stateless.jl index b8ce3c7d..870a6cdf 100644 --- a/src/layers/stateless.jl +++ b/src/layers/stateless.jl @@ -1,3 +1,4 @@ +using CuArrays using NNlib: logsoftmax, logσ # Cost functions @@ -35,6 +36,9 @@ Return `-y*log(ŷ + ϵ) - (1-y)*log(1-ŷ + ϵ)`. The ϵ term provides numerica """ binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ) +# Re-definition to fix interaction with CuArrays. +CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ) + """ logitbinarycrossentropy(logŷ, y) @@ -49,6 +53,9 @@ but it is more numerically stable. """ logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ) +# Re-definition to fix interaction with CuArrays. +CuArrays.@cufunc logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ) + """ normalise(x::AbstractArray; dims=1) diff --git a/src/optimise/optimisers.jl b/src/optimise/optimisers.jl index ea2ef067..c9c40764 100644 --- a/src/optimise/optimisers.jl +++ b/src/optimise/optimisers.jl @@ -283,7 +283,7 @@ ADAGrad(η = 0.1) = ADAGrad(η, IdDict()) function apply!(o::ADAGrad, x, Δ) η = o.eta - acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(x) + acc = get!(o.acc, x, fill!(zero(x), ϵ))::typeof(x) @. acc += Δ^2 @. Δ *= η / (√acc + ϵ) end @@ -349,10 +349,10 @@ AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict()) function apply!(o::AMSGrad, x, Δ) η, β = o.eta, o.beta - mt, vt, v̂t = get!(o.state, x, (fill(ϵ, size(x)), fill(ϵ, size(x)), fill(ϵ, size(x)))) + mt, vt, v̂t = get!(o.state, x, (fill!(zero(x), ϵ), fill!(zero(x), ϵ), fill!(zero(x), ϵ))) @. mt = β[1] * mt + (1 - β[1]) * Δ @. vt = β[2] * vt + (1 - β[2]) * Δ ^ 2 - @. v̂t = max.(v̂t, vt) + @. v̂t = max(v̂t, vt) @. Δ = η * mt / (√v̂t + ϵ) end diff --git a/src/utils.jl b/src/utils.jl index 246c30d7..324d87c8 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -1,6 +1,11 @@ # Arrays -glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0/sum(dims)) -glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0/sum(dims)) +nfan() = 1, 1 #fan_in, fan_out +nfan(n) = 1, n #A vector is treated as a n×1 matrix +nfan(n_out, n_in) = n_in, n_out #In case of Dense kernels: arranged as matrices +nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) #In case of convolution kernels + +glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...))) +glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...))) ones(T::Type, dims...) = Base.ones(T, dims...) zeros(T::Type, dims...) = Base.zeros(T, dims...) diff --git a/test/cuda/cuda.jl b/test/cuda/cuda.jl index d2907995..1576d88f 100644 --- a/test/cuda/cuda.jl +++ b/test/cuda/cuda.jl @@ -31,6 +31,11 @@ cx = gpu(x) @test Flux.crossentropy(x,x, weight=1.0) ≈ Flux.crossentropy(cx,cx, weight=1.0) @test Flux.crossentropy(x,x, weight=[1.0;2.0;3.0]) ≈ Flux.crossentropy(cx,cx, weight=cu([1.0;2.0;3.0])) +x = [-1.1491, 0.8619, 0.3127] +y = [1, 1, 0.] +@test Flux.binarycrossentropy.(σ.(x),y) ≈ Flux.binarycrossentropy.(cu(σ.(x)),cu(y)) +@test Flux.logitbinarycrossentropy.(x,y) ≈ Flux.logitbinarycrossentropy.(cu(x),cu(y)) + xs = rand(5, 5) ys = Flux.onehotbatch(1:5,1:5) @test collect(cu(xs) .+ cu(ys)) ≈ collect(xs .+ ys) diff --git a/test/layers/basic.jl b/test/layers/basic.jl index cbe250fc..0ff1776d 100644 --- a/test/layers/basic.jl +++ b/test/layers/basic.jl @@ -4,11 +4,13 @@ import Flux: activations @testset "basic" begin @testset "helpers" begin @testset "activations" begin - dummy_model = Chain(Dense(10,5,σ),Dense(5,2),softmax) - x = rand(10) - @test activations(Chain(), x) == [] - @test activations(dummy_model, x)[1] == dummy_model[1](x) - @test activations(dummy_model, x)[2] == x |> dummy_model[1] |> dummy_model[2] + dummy_model = Chain(x->x.^2, x->x .- 3, x -> tan.(x)) + x = randn(10) + @test activations(dummy_model, x)[1] == x.^2 + @test activations(dummy_model, x)[2] == (x.^2 .- 3) + @test activations(dummy_model, x)[3] == tan.(x.^2 .- 3) + + @test activations(Chain(), x) == () @test activations(Chain(identity, x->:foo), x)[2] == :foo # results include `Any` type end end @@ -19,6 +21,12 @@ import Flux: activations # numeric test should be put into testset of corresponding layer end + @testset "Activations" begin + c = Chain(Dense(3,5,relu), Dense(5,1,relu)) + X = Float32.([1.0; 1.0; 1.0]) + @test_nowarn gradient(()->Flux.activations(c, X)[2][1], params(c)) + end + @testset "Dense" begin @test length(Dense(10, 5)(randn(10))) == 5 @test_throws DimensionMismatch Dense(10, 5)(randn(1)) diff --git a/test/layers/conv.jl b/test/layers/conv.jl index 75098660..38ad931e 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -1,5 +1,6 @@ using Flux, Test using Flux: maxpool, meanpool +using Flux: gradient @testset "Pooling" begin x = randn(Float32, 10, 10, 3, 2) @@ -54,6 +55,10 @@ end y = Conv((3,3), 1 => 1)(x) x_hat = ConvTranspose((3, 3), 1 => 1)(y) @test size(x_hat) == size(x) + + m = ConvTranspose((3,3), 1=>1) + # Test that the gradient call does not throw: #900 + @test gradient(()->sum(m(x)), params(m)) isa Flux.Zygote.Grads end @testset "CrossCor" begin diff --git a/test/layers/normalisation.jl b/test/layers/normalisation.jl index 22a5d283..4399a256 100644 --- a/test/layers/normalisation.jl +++ b/test/layers/normalisation.jl @@ -191,6 +191,7 @@ end end +if VERSION >= v"1.1" @testset "GroupNorm" begin # begin tests squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions @@ -289,5 +290,5 @@ end x = Float32.(reshape(collect(1:prod(sizes)), sizes)) @test BN(x) ≈ GN(x) end - +end end diff --git a/test/utils.jl b/test/utils.jl index 18a57139..1c275e85 100644 --- a/test/utils.jl +++ b/test/utils.jl @@ -1,6 +1,6 @@ using Flux -using Flux: throttle, glorot_uniform, glorot_normal, stack, unstack -using StatsBase: std +using Flux: throttle, nfan, glorot_uniform, glorot_normal, stack, unstack +using StatsBase: var using Random using Test @@ -56,18 +56,26 @@ end # Set random seed so that these tests don't fail randomly Random.seed!(0) - # glorot_uniform should yield a kernel with stddev ~= sqrt(6/(n_in + n_out)), - # and glorot_normal should yield a kernel with stddev != 2/(n_in _ n_out) - for (n_in, n_out) in [(100, 100), (100, 400)] - v = glorot_uniform(n_in, n_out) - @test minimum(v) > -1.1*sqrt(6/(n_in + n_out)) - @test minimum(v) < -0.9*sqrt(6/(n_in + n_out)) - @test maximum(v) > 0.9*sqrt(6/(n_in + n_out)) - @test maximum(v) < 1.1*sqrt(6/(n_in + n_out)) + @testset "Fan in/out" begin + @test nfan() == (1, 1) #For a constant + @test nfan(100) == (1, 100) #For vector + @test nfan(100, 200) == (200, 100) #For Dense layer + @test nfan(2, 30, 40) == (2 * 30, 2 * 40) #For 1D Conv layer + @test nfan(2, 3, 40, 50) == (2 * 3 * 40, 2 * 3 * 50) #For 2D Conv layer + @test nfan(2, 3, 4, 50, 60) == (2 * 3 * 4 * 50, 2 * 3 * 4 * 60) #For 3D Conv layer + end - v = glorot_normal(n_in, n_out) - @test std(v) > 0.9*sqrt(2/(n_in + n_out)) - @test std(v) < 1.1*sqrt(2/(n_in + n_out)) + @testset "glorot" begin + # glorot_uniform and glorot_normal should both yield a kernel with + # variance ≈ 2/(fan_in + fan_out) + for dims ∈ [(1000,), (100, 100), (100, 400), (2, 3, 32, 64), (2, 3, 4, 32, 64)] + for init ∈ [glorot_uniform, glorot_normal] + v = init(dims...) + fan_in, fan_out = nfan(dims...) + σ2 = 2 / (fan_in + fan_out) + @test 0.9σ2 < var(v) < 1.1σ2 + end + end end end