diff --git a/src/layers/basic.jl b/src/layers/basic.jl index 786cf32e..1e2ab891 100644 --- a/src/layers/basic.jl +++ b/src/layers/basic.jl @@ -130,7 +130,7 @@ end Maxout(over) `Maxout` is a neural network layer, which has a number of internal layers, -which all have the same input, and the max out returns the elementwise maximium +which all have the same input, and the maxout returns the elementwise maximium of the internal layers' outputs. Maxout over linear dense layers satisfies the univeral approximation theorem. @@ -150,15 +150,16 @@ end Maxout(f, n_alts, args...; kwargs...) Constructs a Maxout layer over `n_alts` instances of the layer given by `f`. -All other arguements (`args` & `kwargs`) are passed to the constructor `f`. +The function takes no arguement and should return some callable layer. +Conventionally this is a linear dense layer. For example the following example which -will construct a `Maxout` layer over 4 dense linear layers, +will construct a `Maxout` layer over 4 internal dense linear layers, each identical in structure (784 inputs, 128 outputs). ```julia insize = 784 outsie = 128 - Maxout(Dense, 4, insize, outsize) + Maxout(()->Dense(insize, outsize), 4) ``` """ function Maxout(f, n_alts, args...; kwargs...)