use https instead of http for web links
This commit is contained in:
parent
01ffa21939
commit
7f06b15f67
|
@ -2,7 +2,7 @@
|
||||||
<img width="400px" src="https://raw.githubusercontent.com/FluxML/fluxml.github.io/master/logo.png"/>
|
<img width="400px" src="https://raw.githubusercontent.com/FluxML/fluxml.github.io/master/logo.png"/>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
[![Build Status](https://travis-ci.org/FluxML/Flux.jl.svg?branch=master)](https://travis-ci.org/FluxML/Flux.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://slackinvite.julialang.org/) [![DOI](http://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602)
|
[![Build Status](https://travis-ci.org/FluxML/Flux.jl.svg?branch=master)](https://travis-ci.org/FluxML/Flux.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://slackinvite.julialang.org/) [![DOI](https://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602)
|
||||||
|
|
||||||
Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable.
|
Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable.
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, a
|
||||||
julia> Pkg.add("Flux")
|
julia> Pkg.add("Flux")
|
||||||
```
|
```
|
||||||
|
|
||||||
See the [documentation](http://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
See the [documentation](https://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
||||||
|
|
||||||
If you use Flux in research, please cite the following paper:
|
If you use Flux in research, please cite the following paper:
|
||||||
|
|
||||||
|
|
|
@ -14,7 +14,7 @@
|
||||||
journal = {arXiv},
|
journal = {arXiv},
|
||||||
volume = {abs/11712.03112},
|
volume = {abs/11712.03112},
|
||||||
year = {2017},
|
year = {2017},
|
||||||
url = {http://arxiv.org/abs/1712.03112},
|
url = {https://arxiv.org/abs/1712.03112},
|
||||||
}
|
}
|
||||||
|
|
||||||
@online{MLPL,
|
@online{MLPL,
|
||||||
|
@ -29,7 +29,7 @@
|
||||||
author = {Mike Innes and others},
|
author = {Mike Innes and others},
|
||||||
title = {Generic GPU Kernels},
|
title = {Generic GPU Kernels},
|
||||||
year = 2017,
|
year = 2017,
|
||||||
url = {http://mikeinnes.github.io/2017/08/24/cudanative.html},
|
url = {https://mikeinnes.github.io/2017/08/24/cudanative.html},
|
||||||
urldate = {2018-02-16}
|
urldate = {2018-02-16}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -19,7 +19,7 @@ function load()
|
||||||
@info "Downloading CMUDict dataset"
|
@info "Downloading CMUDict dataset"
|
||||||
mkpath(deps("cmudict"))
|
mkpath(deps("cmudict"))
|
||||||
for (x, hash) in suffixes_and_hashes
|
for (x, hash) in suffixes_and_hashes
|
||||||
download_and_verify("$cache_prefix/http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
|
download_and_verify("$cache_prefix/https://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
|
||||||
deps("cmudict", "cmudict$x"), hash)
|
deps("cmudict", "cmudict$x"), hash)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
|
@ -26,7 +26,7 @@ function load()
|
||||||
isfile(deps("iris.data")) && return
|
isfile(deps("iris.data")) && return
|
||||||
|
|
||||||
@info "Downloading iris dataset."
|
@info "Downloading iris dataset."
|
||||||
download_and_verify("$(cache_prefix)http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
|
download_and_verify("$(cache_prefix)https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
|
||||||
deps("iris.data"),
|
deps("iris.data"),
|
||||||
"6f608b71a7317216319b4d27b4d9bc84e6abd734eda7872b71a458569e2656c0")
|
"6f608b71a7317216319b4d27b4d9bc84e6abd734eda7872b71a458569e2656c0")
|
||||||
end
|
end
|
||||||
|
|
|
@ -153,7 +153,7 @@ Base.show(io::IO, l::LSTMCell) =
|
||||||
Long Short Term Memory recurrent layer. Behaves like an RNN but generally
|
Long Short Term Memory recurrent layer. Behaves like an RNN but generally
|
||||||
exhibits a longer memory span over sequences.
|
exhibits a longer memory span over sequences.
|
||||||
|
|
||||||
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||||
for a good overview of the internals.
|
for a good overview of the internals.
|
||||||
"""
|
"""
|
||||||
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
|
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
|
||||||
|
@ -194,7 +194,7 @@ Base.show(io::IO, l::GRUCell) =
|
||||||
Gated Recurrent Unit layer. Behaves like an RNN but generally
|
Gated Recurrent Unit layer. Behaves like an RNN but generally
|
||||||
exhibits a longer memory span over sequences.
|
exhibits a longer memory span over sequences.
|
||||||
|
|
||||||
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||||
for a good overview of the internals.
|
for a good overview of the internals.
|
||||||
"""
|
"""
|
||||||
GRU(a...; ka...) = Recur(GRUCell(a...; ka...))
|
GRU(a...; ka...) = Recur(GRUCell(a...; ka...))
|
||||||
|
|
|
@ -66,7 +66,7 @@ end
|
||||||
"""
|
"""
|
||||||
RMSProp(η = 0.001, ρ = 0.9)
|
RMSProp(η = 0.001, ρ = 0.9)
|
||||||
|
|
||||||
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||||
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
||||||
choice for recurrent networks.
|
choice for recurrent networks.
|
||||||
"""
|
"""
|
||||||
|
@ -155,7 +155,7 @@ end
|
||||||
"""
|
"""
|
||||||
ADADelta(ρ = 0.9, ϵ = 1e-8)
|
ADADelta(ρ = 0.9, ϵ = 1e-8)
|
||||||
|
|
||||||
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
||||||
tuning.
|
tuning.
|
||||||
"""
|
"""
|
||||||
mutable struct ADADelta
|
mutable struct ADADelta
|
||||||
|
|
Loading…
Reference in New Issue