merge conflicts
This commit is contained in:
commit
822288d63d
|
@ -1 +1,2 @@
|
|||
paper/* linguist-documentation
|
||||
CITATION.bib linguist-detectable=false
|
||||
|
|
|
@ -46,9 +46,9 @@ version = "0.6.2"
|
|||
|
||||
[[CUDAapi]]
|
||||
deps = ["Libdl", "Logging"]
|
||||
git-tree-sha1 = "9b2b4b71d6b7f946c9689bb4dea03ff92e3c7091"
|
||||
git-tree-sha1 = "e063efb91cfefd7e6afd92c435d01398107a500b"
|
||||
uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
|
||||
version = "1.1.0"
|
||||
version = "1.2.0"
|
||||
|
||||
[[CUDAdrv]]
|
||||
deps = ["CUDAapi", "Libdl", "Printf"]
|
||||
|
@ -147,9 +147,15 @@ uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
|||
|
||||
[[FFTW]]
|
||||
deps = ["AbstractFFTs", "BinaryProvider", "Conda", "Libdl", "LinearAlgebra", "Reexport", "Test"]
|
||||
<<<<<<< HEAD
|
||||
git-tree-sha1 = "03f8776fbdae28c20c0d1d2ae4e090cd1dfcd247"
|
||||
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
|
||||
version = "1.0.0"
|
||||
=======
|
||||
git-tree-sha1 = "6c5b420da0b8c12098048561b8d58f81adea506f"
|
||||
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
|
||||
version = "1.0.1"
|
||||
>>>>>>> upstream/master
|
||||
|
||||
[[FillArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "SparseArrays"]
|
||||
|
@ -170,9 +176,15 @@ version = "0.10.3"
|
|||
|
||||
[[GPUArrays]]
|
||||
deps = ["Adapt", "FFTW", "FillArrays", "LinearAlgebra", "Printf", "Random", "Serialization", "StaticArrays", "Test"]
|
||||
<<<<<<< HEAD
|
||||
git-tree-sha1 = "b5009ac44b141ded5e6f04c4db83807970f56e91"
|
||||
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
|
||||
version = "1.0.2"
|
||||
=======
|
||||
git-tree-sha1 = "77e27264276fe97a7e7fb928bf8999a145abc018"
|
||||
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
|
||||
version = "1.0.3"
|
||||
>>>>>>> upstream/master
|
||||
|
||||
[[IRTools]]
|
||||
deps = ["InteractiveUtils", "MacroTools", "Test"]
|
||||
|
@ -388,7 +400,7 @@ version = "0.8.3"
|
|||
|
||||
[[Zygote]]
|
||||
deps = ["DiffRules", "FFTW", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
|
||||
git-tree-sha1 = "ce6d7142d665b1e4c71c678fa7db4da3bbc6743f"
|
||||
git-tree-sha1 = "38241b40ebd8748bcacad5e6c7ba3ab3cc7a15c9"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/Zygote.jl.git"
|
||||
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
|
@ -396,6 +408,8 @@ version = "0.3.4"
|
|||
|
||||
[[ZygoteRules]]
|
||||
deps = ["MacroTools"]
|
||||
git-tree-sha1 = "def5f96ac2895fd9b48435f6b97020979ee0a4c6"
|
||||
git-tree-sha1 = "c4c29b30b8ff3be13d4244e78be7df2a42bc54d0"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/ZygoteRules.jl.git"
|
||||
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
|
||||
version = "0.1.0"
|
||||
version = "0.2.0"
|
||||
|
|
|
@ -24,6 +24,7 @@ StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
|||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
ZygoteRules = "700de1a5-db45-46bc-99cf-38207098b444"
|
||||
|
||||
[compat]
|
||||
CUDAapi = "1.1"
|
||||
|
|
|
@ -5,7 +5,7 @@ Consider a [simple linear regression](../models/basics.md). We create some dummy
|
|||
```julia
|
||||
using Flux
|
||||
|
||||
W = rand(2, 5))
|
||||
W = rand(2, 5)
|
||||
b = rand(2)
|
||||
|
||||
predict(x) = (W * x) .+ b
|
||||
|
@ -15,7 +15,7 @@ x, y = rand(5), rand(2) # Dummy data
|
|||
l = loss(x, y) # ~ 3
|
||||
|
||||
θ = Params([W, b])
|
||||
grads = Zygote.gradient(() -> loss(x, y), θ)
|
||||
grads = gradient(() -> loss(x, y), θ)
|
||||
```
|
||||
|
||||
We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here's one way to do that:
|
||||
|
|
|
@ -6,7 +6,7 @@ using Base: tail
|
|||
using Zygote, MacroTools, Juno, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
@reexport using NNlib
|
||||
using Zygote: Params, @adjoint, gradient, forward
|
||||
using Zygote: Params, @adjoint, gradient, pullback
|
||||
export gradient
|
||||
|
||||
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool,
|
||||
|
|
|
@ -271,7 +271,8 @@ function desc(rnn)
|
|||
return d
|
||||
end
|
||||
|
||||
using ..Flux: @adjoint
|
||||
import Zygote
|
||||
using Zygote: @adjoint
|
||||
|
||||
function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
y, h′ = forward(desc(m), x, h)
|
||||
|
@ -299,15 +300,29 @@ unbroadcast(x::AbstractArray, Δ) =
|
|||
length(x) == length(Δ) ? trim(x, Δ) :
|
||||
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
|
||||
|
||||
coerce_cuda(x::Union{CuArray,Nothing}) = x
|
||||
coerce_cuda(x::Tuple) = coerce_cuda.(x)
|
||||
|
||||
coerce_cuda(x) = x .+ CuArrays.fill(0)
|
||||
|
||||
function struct_grad!(cx::Zygote.Context, x, x̄)
|
||||
for f in fieldnames(typeof(x))
|
||||
Zygote.accum_param(cx, getfield(x, f), getfield(x̄, f))
|
||||
end
|
||||
dx = Zygote.grad_mut(cx, x)
|
||||
dx[] = Zygote.accum(dx[], x̄)
|
||||
return dx
|
||||
end
|
||||
|
||||
for RNN in (CuRNN, CuGRU)
|
||||
@eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
reserve, (y, ho) = forwardTrain(desc(m), x, h)
|
||||
(ho, y), function (Δ)
|
||||
dho, dy = Δ
|
||||
dho, dy = coerce_cuda(Δ)
|
||||
h_ = hBatch(x, h)
|
||||
dx, dh = backwardData(descs[m], y, dy, dho, h_, reserve)
|
||||
(dWi, dWh), db = backwardWeights(descs[m], x, h_, y, reserve)
|
||||
dm = Ref{Any}((σ=nothing,Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing))
|
||||
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing))
|
||||
(dm, unbroadcast(h, dh), dx)
|
||||
end
|
||||
end
|
||||
|
@ -316,13 +331,13 @@ end
|
|||
@adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
|
||||
reserve, (y, ho, co) = forwardTrain(desc(m), x, h, c)
|
||||
((ho, co), y), function (Δ)
|
||||
dhc, dy = Δ
|
||||
dhc, dy = coerce_cuda(Δ)
|
||||
dho, dco = dhc === nothing ? (nothing, nothing) : dhc
|
||||
h_ = hBatch(x, h)
|
||||
c_ = hBatch(x, c)
|
||||
dx, dh, dc = backwardData(descs[m], y, dy, dho, dco, h_, c_, reserve)
|
||||
(dWi, dWh), db = backwardWeights(descs[m], x, h_, y, reserve)
|
||||
dm = Ref{Any}((Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing,c=nothing))
|
||||
dm = struct_grad!(__context__, m, (Wi=transpose(dWi),Wh=transpose(dWh),b=db,h=nothing,c=nothing))
|
||||
(dm, (unbroadcast(h, dh), unbroadcast(c, dc)), dx)
|
||||
end
|
||||
end
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
using Flux, CuArrays, Test
|
||||
using Flux: forward
|
||||
using Flux: pullback
|
||||
|
||||
@testset "CUDNN BatchNorm" begin
|
||||
@testset "4D Input" begin
|
||||
|
@ -8,8 +8,8 @@ using Flux: forward
|
|||
cx = gpu(x)
|
||||
cm = gpu(m)
|
||||
|
||||
y, back = forward((m, x) -> m(x), m, x)
|
||||
cy, cback = forward((m, x) -> m(x), cm, cx)
|
||||
y, back = pullback((m, x) -> m(x), m, x)
|
||||
cy, cback = pullback((m, x) -> m(x), cm, cx)
|
||||
|
||||
@test cpu(cy) ≈ y
|
||||
|
||||
|
@ -28,8 +28,8 @@ using Flux: forward
|
|||
cx = gpu(x)
|
||||
cm = gpu(m)
|
||||
|
||||
y, back = forward((m, x) -> m(x), m, x)
|
||||
cy, cback = forward((m, x) -> m(x), cm, cx)
|
||||
y, back = pullback((m, x) -> m(x), m, x)
|
||||
cy, cback = pullback((m, x) -> m(x), cm, cx)
|
||||
|
||||
@test cpu(cy) ≈ y
|
||||
|
||||
|
|
|
@ -1,5 +1,14 @@
|
|||
using Flux, CuArrays, Test
|
||||
using Flux: forward
|
||||
using Flux: pullback
|
||||
|
||||
@testset for R in [RNN, GRU, LSTM]
|
||||
m = R(10, 5) |> gpu
|
||||
x = gpu(rand(10))
|
||||
(m̄,) = gradient(m -> sum(m(x)), m)
|
||||
Flux.reset!(m)
|
||||
θ = gradient(() -> sum(m(x)), params(m))
|
||||
@test collect(m̄[].cell[].Wi) == collect(θ[m.cell.Wi])
|
||||
end
|
||||
|
||||
@testset "RNN" begin
|
||||
@testset for R in [RNN, GRU, LSTM], batch_size in (1, 5)
|
||||
|
@ -13,8 +22,8 @@ using Flux: forward
|
|||
rand(10, batch_size)
|
||||
cux = gpu(x)
|
||||
|
||||
y, back = forward((r, x) -> (r(x)), rnn, x)
|
||||
cuy, cuback = forward((r, x) -> (r(x)), curnn, cux)
|
||||
y, back = pullback((r, x) -> (r(x)), rnn, x)
|
||||
cuy, cuback = pullback((r, x) -> (r(x)), curnn, cux)
|
||||
|
||||
@test y ≈ collect(cuy)
|
||||
@test haskey(Flux.CUDA.descs, curnn.cell)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using Flux, Test, Statistics
|
||||
using Zygote: forward
|
||||
using Zygote: pullback
|
||||
|
||||
trainmode(f, x...) = forward(f, x...)[1]
|
||||
trainmode(f, x...) = pullback(f, x...)[1]
|
||||
trainmode(f) = (x...) -> trainmode(f, x...)
|
||||
|
||||
@testset "Dropout" begin
|
||||
|
|
|
@ -55,7 +55,7 @@ const ϵ = 1e-7
|
|||
y = rand(T, 2)
|
||||
ŷ = rand(T, 2)
|
||||
for f in (mse, crossentropy, logitcrossentropy)
|
||||
fwd, back = Flux.forward(f, ŷ, y)
|
||||
fwd, back = Flux.pullback(f, ŷ, y)
|
||||
@test fwd isa T
|
||||
@test eltype(back(one(T))[1]) == T
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue