opt docstrings

This commit is contained in:
Dhairya Gandhi 2019-09-27 22:04:53 +05:30
parent 32ac71734d
commit 8bb0db7d0c

View File

@ -8,6 +8,7 @@ const ϵ = 1e-8
"""
Descent(η)
Defaults: η = 0.1
Classic gradient descent optimiser with learning rate `η`.
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
@ -23,7 +24,8 @@ function apply!(o::Descent, x, Δ)
end
"""
Momentum(η = 0.01; ρ = 0.9)
Momentum(η, ρ)
Defaults: η = 0.01, ρ = 0.9
Gradient descent with learning rate `η` and momentum `ρ`.
"""
@ -43,7 +45,8 @@ function apply!(o::Momentum, x, Δ)
end
"""
Nesterov(eta, ρ = 0.9)
Nesterov(η, ρ)
Defaults: η = 0.001, ρ = 0.9
Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
"""
@ -64,7 +67,8 @@ function apply!(o::Nesterov, x, Δ)
end
"""
RMSProp(η = 0.001, ρ = 0.9)
RMSProp(η, ρ)
Defaults: η = 0.001, ρ = 0.9
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
optimiser. Parameters other than learning rate don't need tuning. Often a good
@ -86,7 +90,8 @@ function apply!(o::RMSProp, x, Δ)
end
"""
ADAM(η = 0.001, β = (0.9, 0.999))
Defaults: η = 0.001, β = (0.9, 0.999)
ADAM() => ADAM(η, β)
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
@ -109,7 +114,8 @@ function apply!(o::ADAM, x, Δ)
end
"""
RADAM(η = 0.001, β = (0.9, 0.999))
Defaults: η = 0.001, β = (0.9, 0.999)
RADAM() => RADAM(η, β)
[RADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimiser (Rectified ADAM).
"""
@ -139,7 +145,8 @@ function apply!(o::RADAM, x, Δ)
end
"""
AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08)
Defaults: η = 0.001, β = (0.9, 0.999)
AdaMax() => AdaMax(η, β)
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on
the -norm.
@ -163,7 +170,8 @@ function apply!(o::AdaMax, x, Δ)
end
"""
ADAGrad(η = 0.1; ϵ = 1e-8)
Defaults: η = 0.1
ADAGrad() => ADAGrad(η)
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
@ -183,7 +191,8 @@ function apply!(o::ADAGrad, x, Δ)
end
"""
ADADelta(ρ = 0.9, ϵ = 1e-8)
Defaults: ρ = 0.9
ADADelta() => ADADelta(ρ)
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning.
@ -205,7 +214,8 @@ function apply!(o::ADADelta, x, Δ)
end
"""
AMSGrad(η = 0.001, β = (0.9, 0.999))
Defaults: η = 0.001, β = (0.9, 0.999)
AMSGrad() => AMSGrad(η, β)
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
tuning.
@ -228,7 +238,8 @@ function apply!(o::AMSGrad, x, Δ)
end
"""
NADAM(η = 0.001, β = (0.9, 0.999))
Defaults: η = 0.001, β = (0.9, 0.999)
NADAM() => NADAM(η, β)
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser. Parameters don't need
tuning.
@ -252,7 +263,8 @@ function apply!(o::NADAM, x, Δ)
end
"""
ADAMW((η = 0.001, β = (0.9, 0.999), decay = 0)
Defaults: η = 0.001, β = (0.9, 0.999), decay = 0
ADAMW() => ADAMW(η, β, decay)
[ADAMW](https://arxiv.org/abs/1711.05101) fixing weight decay regularization in Adam.
"""
@ -287,7 +299,8 @@ function apply!(o::Optimiser, x, Δ)
end
"""
`InvDecay(γ)`
Defaults: γ = 0.001
`InvDecay() => InvDecay(γ)`
Apply inverse time decay to an optimiser
```julia
@ -311,6 +324,7 @@ end
"""
`ExpDecay(eta, decay, decay_step, clip)`
Defaults: eta = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4
Schedule the learning rate `eta` by `decay` every `decay_step` till a minimum of `clip`.
@ -340,7 +354,8 @@ function apply!(o::ExpDecay, x, Δ)
end
"""
`WeightDecay(wd)`
`WeightDecay() => WeightDecay(wd)`
Defaults: wd = 0
Decay the weight parameter by `wd`
"""