Merge pull request #207 from safnuk/pull-request/07b0f95d

BatchNorm for convolutions
This commit is contained in:
Mike J Innes 2018-04-15 20:10:33 +01:00 committed by GitHub
commit 8f29968c32
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 56 additions and 24 deletions

View File

@ -68,70 +68,84 @@ function Base.show(io::IO, l::LayerNorm)
end
"""
BatchNorm(dims...; λ = identity,
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1)
BatchNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Batch Normalization Layer for [`Dense`](@ref) layer.
Batch Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`BatchNorm` computes the mean and variance for each each `W×H×1×N` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
See [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf)
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf).
In the example of MNIST,
in order to normalize the input of other layer,
put the `BatchNorm` layer before activation function.
Example:
```julia
m = Chain(
Dense(28^2, 64),
BatchNorm(64, λ = relu),
BatchNorm(64, relu),
Dense(64, 10),
BatchNorm(10),
softmax)
```
"""
mutable struct BatchNorm{F,V,N}
mutable struct BatchNorm{F,V,W,N}
λ::F # activation function
β::V # bias
γ::V # scale
μ # moving mean
σ # moving std
μ::W # moving mean
σ::W # moving std
ϵ::N
momentum::N
active::Bool
end
BatchNorm(dims::Integer...; λ = identity,
BatchNorm(chs::Integer, λ = identity;
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1) =
BatchNorm(λ, param(initβ(dims)), param(initγ(dims)), 0., 1., ϵ, momentum, true)
BatchNorm(λ, param(initβ(chs)), param(initγ(chs)),
zeros(chs), ones(chs), ϵ, momentum, true)
function (BN::BatchNorm)(x)
λ, γ, β = BN.λ, BN.γ, BN.β
dims = length(size(x))
channels = size(x, dims-1)
affine_shape = ones(Int, dims)
affine_shape[end-1] = channels
m = prod(size(x)[1:end-2]) * size(x)[end]
if !BN.active
μ = BN.μ
σ = BN.σ
μ = reshape(BN.μ, affine_shape...)
σ = reshape(BN.σ, affine_shape...)
else
T = eltype(x)
ϵ = data(convert(T, BN.ϵ))
m = size(x, 2) # batch size
μ = mean(x, 2)
σ = sqrt.(sum((x .- μ).^2, 2) ./ m .+ ϵ)
axes = [1:dims-2; dims] # axes to reduce along (all but channels axis)
μ = mean(x, axes)
σ = sqrt.(mean((x .- μ).^2, axes) .+ ϵ)
# update moving mean/std
mtm = data(convert(T, BN.momentum))
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* data(μ)
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* data(σ) .* m ./ (m - 1)
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...))
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* squeeze(data(σ), (axes...)) .* m ./ (m - 1)
end
λ.(γ .* ((x .- μ) ./ σ) .+ β)
λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ σ) .+ reshape(β, affine_shape...))
end
children(BN::BatchNorm) =
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.momentum, BN.ϵ, BN.active)
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.ϵ, BN.momentum, BN.active)
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
BatchNorm(BN.λ, f(BN.β), f(BN.γ), BN.μ, BN.σ, BN.momentum, BN.ϵ, BN.active)
BatchNorm(BN.λ, f(BN.β), f(BN.γ), f(BN.μ), f(BN.σ), BN.ϵ, BN.momentum, BN.active)
_testmode!(BN::BatchNorm, test) = (BN.active = !test)

View File

@ -67,7 +67,7 @@ end
end
# with activation function
let m = BatchNorm(2, λ = σ), x = param([1 2; 3 4; 5 6]')
let m = BatchNorm(2, σ), x = param([1 2; 3 4; 5 6]')
@test m.active
m(x)
@ -77,4 +77,22 @@ end
x = m(x).data
@test x[1] σ((1 - 0.3) / 1.1449489742783179)
end
let m = BatchNorm(2), x = param(reshape(1:6, 3, 2, 1))
y = reshape(permutedims(x, [2, 1, 3]), 2, :)
y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3])
@test m(x) == y
end
let m = BatchNorm(2), x = param(reshape(1:12, 2, 3, 2, 1))
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
@test m(x) == y
end
let m = BatchNorm(2), x = param(reshape(1:24, 2, 2, 3, 2, 1))
y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
@test m(x) == y
end
end