Changes to docs
This commit is contained in:
parent
ec886c8ce8
commit
96a23c295c
@ -66,7 +66,7 @@ LayerNorm
|
|||||||
GroupNorm
|
GroupNorm
|
||||||
```
|
```
|
||||||
|
|
||||||
## In-built loss functions:
|
## Loss functions:
|
||||||
```@docs
|
```@docs
|
||||||
mse
|
mse
|
||||||
crossentropy
|
crossentropy
|
||||||
|
@ -51,10 +51,10 @@ function normalise(x::AbstractArray; dims=1)
|
|||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Kullback Leibler Divergence(KL Divergence)
|
kldivergence(ŷ, y)
|
||||||
KLDivergence is a measure of how much one probability distribution is different from the other.
|
KLDivergence is a measure of how much one probability distribution is different from the other.
|
||||||
It is always non-negative and zero only when both the distributions are equal everywhere.
|
It is always non-negative and zero only when both the distributions are equal everywhere.
|
||||||
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
|
[KL Divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence).
|
||||||
"""
|
"""
|
||||||
function kldivergence(ŷ, y)
|
function kldivergence(ŷ, y)
|
||||||
entropy = sum(y .* log.(y)) *1 //size(y,2)
|
entropy = sum(y .* log.(y)) *1 //size(y,2)
|
||||||
@ -63,14 +63,15 @@ function kldivergence(ŷ, y)
|
|||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Poisson Loss function
|
poisson(ŷ, y)
|
||||||
Poisson loss function is a measure of how the predicted distribution diverges from the expected distribution.
|
Poisson loss function is a measure of how the predicted distribution diverges from the expected distribution.
|
||||||
https://isaacchanghau.github.io/post/loss_functions/
|
[Poisson Loss](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
|
||||||
"""
|
"""
|
||||||
poisson(ŷ, y) = sum(ŷ .- y .* log.(ŷ)) *1 // size(y,2)
|
poisson(ŷ, y) = sum(ŷ .- y .* log.(ŷ)) *1 // size(y,2)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Hinge Loss function
|
hinge(ŷ, y)
|
||||||
Measures the loss given the prediction ŷ and true labels y(containing 1 or -1). This is usually used for measuring whether two inputs are similar or dissimilar
|
Measures the loss given the prediction ŷ and true labels y(containing 1 or -1).
|
||||||
|
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss).
|
||||||
"""
|
"""
|
||||||
hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
||||||
|
Loading…
Reference in New Issue
Block a user