Added tversky and dice loss
This commit is contained in:
parent
659ba074d1
commit
980ce72914
|
@ -74,14 +74,14 @@ Computes the mean of the Huber loss between prediction ŷ and true values y. By
|
|||
"""
|
||||
function huber_loss(ŷ, y,delta=1.0)
|
||||
abs_error = abs.(ŷ.-y)
|
||||
type_ = eltype(ŷ)
|
||||
delta = type_(delta)
|
||||
hub_loss =type_(0)
|
||||
dtype= eltype(ŷ)
|
||||
delta = dtype(delta)
|
||||
hub_loss = dtype(0)
|
||||
for i in 1:length(y)
|
||||
if (abs_error[i]<=delta)
|
||||
hub_loss+=abs_error[i]^2*type_(0.5)
|
||||
hub_loss+=abs_error[i]^2*dtype(0.5)
|
||||
else
|
||||
hub_loss+=delta*(abs_error[i]-type_(0.5*delta))
|
||||
hub_loss+=delta*(abs_error[i]- dtype(0.5*delta))
|
||||
end
|
||||
|
||||
return hub_loss*1//length(y)
|
||||
|
@ -226,4 +226,29 @@ hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
|||
L2 loss function. Computes squared hinge loss over the prediction ŷ and true labels y(conatining 1 or -1)
|
||||
"""
|
||||
squared_hinge(ŷ, y) = sum((max.(0,1 .-ŷ .* y)).^2) *1//size(y,2)
|
||||
|
||||
|
||||
"""
|
||||
dice_coeff_loss(y_pred,y_true,smooth = 1)
|
||||
|
||||
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score
|
||||
Dice_Coefficient(A,B) = 2*sum(|A*B|+smooth)/(sum(A^2)+sum(B^2)+ smooth)
|
||||
Dice_loss = 1-Dice_Coefficient
|
||||
|
||||
Ref: [V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
|
||||
"""
|
||||
function dice_coeff_loss(y_pred,y_true,smooth=eltype(y_pred)(1.0))
|
||||
intersection = sum(y_true.*y_pred)
|
||||
return 1 - (2*intersection + smooth)/(sum(y_true.^2) + sum(y_pred.^2)+smooth)
|
||||
end
|
||||
|
||||
"""
|
||||
tversky_loss(y_pred,y_true,beta = 0.7)
|
||||
|
||||
Used with imbalanced data to give more weightage to False negatives. Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
|
||||
tversky_loss(ŷ,y,beta) = 1 - sum(|y.*ŷ| + 1) / (sum(y.*ŷ + beta*(1 .- y).*ŷ + (1 .- beta)*y.*(1 .- ŷ))+ 1)
|
||||
Ref: [Tversky loss function for image segmentation using 3D fully convolutional deep networks](https://arxiv.org/pdf/1706.05721.pdf)
|
||||
"""
|
||||
function tversky_loss(y_pred,y_true,beta = eltype(y_pred)(0.7))
|
||||
intersection = sum(y_true.*y_pred)
|
||||
return 1 - (intersection+1)/(sum(y_true.*y_pred + beta*(1 .- y_true).* y_pred + (1-beta).*y_true.*(1 .- y_pred))+1)
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue