Added tversky and dice loss

This commit is contained in:
Adarsh Kumar 2020-02-27 02:00:28 +05:30 committed by GitHub
parent 659ba074d1
commit 980ce72914
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 31 additions and 6 deletions

View File

@ -74,14 +74,14 @@ Computes the mean of the Huber loss between prediction ŷ and true values y. By
"""
function huber_loss(, y,delta=1.0)
abs_error = abs.(.-y)
type_ = eltype()
delta = type_(delta)
hub_loss =type_(0)
dtype= eltype()
delta = dtype(delta)
hub_loss = dtype(0)
for i in 1:length(y)
if (abs_error[i]<=delta)
hub_loss+=abs_error[i]^2*type_(0.5)
hub_loss+=abs_error[i]^2*dtype(0.5)
else
hub_loss+=delta*(abs_error[i]-type_(0.5*delta))
hub_loss+=delta*(abs_error[i]- dtype(0.5*delta))
end
return hub_loss*1//length(y)
@ -226,4 +226,29 @@ hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
L2 loss function. Computes squared hinge loss over the prediction and true labels y(conatining 1 or -1)
"""
squared_hinge(, y) = sum((max.(0,1 .- .* y)).^2) *1//size(y,2)
"""
dice_coeff_loss(y_pred,y_true,smooth = 1)
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score
Dice_Coefficient(A,B) = 2*sum(|A*B|+smooth)/(sum(A^2)+sum(B^2)+ smooth)
Dice_loss = 1-Dice_Coefficient
Ref: [V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
"""
function dice_coeff_loss(y_pred,y_true,smooth=eltype(y_pred)(1.0))
intersection = sum(y_true.*y_pred)
return 1 - (2*intersection + smooth)/(sum(y_true.^2) + sum(y_pred.^2)+smooth)
end
"""
tversky_loss(y_pred,y_true,beta = 0.7)
Used with imbalanced data to give more weightage to False negatives. Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
tversky_loss(,y,beta) = 1 - sum(|y.*| + 1) / (sum(y.* + beta*(1 .- y).* + (1 .- beta)*y.*(1 .- ))+ 1)
Ref: [Tversky loss function for image segmentation using 3D fully convolutional deep networks](https://arxiv.org/pdf/1706.05721.pdf)
"""
function tversky_loss(y_pred,y_true,beta = eltype(y_pred)(0.7))
intersection = sum(y_true.*y_pred)
return 1 - (intersection+1)/(sum(y_true.*y_pred + beta*(1 .- y_true).* y_pred + (1-beta).*y_true.*(1 .- y_pred))+1)
end