Updated Msle loss
This commit is contained in:
parent
3d8965230f
commit
9dce623214
|
@ -17,33 +17,28 @@ mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
mean_squared_logarithmic_error(ŷ, y;ϵ1=eps.(Float64.(ŷ)),ϵ2=eps.(Float64.(y)))
|
msle(ŷ, y;ϵ1=eps.(Float64.(ŷ)),ϵ2=eps.(Float64.(y)))
|
||||||
|
|
||||||
L2 loss function. Returns the mean of the squared logarithmic errors of prediction ŷ, and true values y. The ϵ1 and ϵ2 terms provide numerical stability.
|
Mean Squared Logarithmic Error,an L2 loss function. Returns the mean of the squared logarithmic errors of prediction ŷ, and true values y. The ϵ1 and ϵ2 terms provide numerical stability.
|
||||||
(Computes mean of squared(log(predicted values)-log(true value)). This error penalizes an under-predicted estimate greater than an over-predicted estimate.
|
(Computes mean of squared(log(predicted values)-log(true value)). This error penalizes an under-predicted estimate greater than an over-predicted estimate.
|
||||||
|
|
||||||
```julia
|
```julia
|
||||||
julia> y_=[14726,327378,74734]
|
julia> y=[14726,327378,74734]
|
||||||
3-element Array{Int64,1}:
|
3-element Array{Int64,1}:
|
||||||
14726
|
14726
|
||||||
327378
|
327378
|
||||||
74734
|
74734
|
||||||
|
|
||||||
julia> y = [12466.1,16353.95,16367.98]
|
julia> ŷ = [12466.1,16353.95,16367.98]
|
||||||
3-element Array{Float64,1}:
|
3-element Array{Float64,1}:
|
||||||
12466.1
|
12466.1
|
||||||
16353.95
|
16353.95
|
||||||
16367.98
|
16367.98
|
||||||
|
|
||||||
julia> mean_squared_logarithmic_error(y,y_)
|
julia> msle(ŷ,y)
|
||||||
3.771271382334686
|
3.771271382334686
|
||||||
```
|
```
|
||||||
Alias:
|
|
||||||
msle(ŷ,y;ϵ1=eps.(Float64.(ŷ)),ϵ2=eps.(Float64.(y)))
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
mean_squared_logarithmic_error(ŷ, y;ϵ1=eps.(ŷ),ϵ2=eps.(eltype(ŷ).(y))) = sum((log.(ŷ+ϵ1).-log.(y+ϵ2)).^2) * 1 // length(y)
|
|
||||||
#Alias
|
|
||||||
msle(ŷ, y;ϵ1=eps.(ŷ),ϵ2=eps.(eltype(ŷ).(y))) = sum((log.(ŷ+ϵ1).-log.(y+ϵ2)).^2) * 1 // length(y)
|
msle(ŷ, y;ϵ1=eps.(ŷ),ϵ2=eps.(eltype(ŷ).(y))) = sum((log.(ŷ+ϵ1).-log.(y+ϵ2)).^2) * 1 // length(y)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue