ditto remaining conv layers
This commit is contained in:
parent
5ea6a33f44
commit
9f2ac8fdef
@ -92,20 +92,21 @@ struct ConvTranspose{N,M,F,A,V}
|
|||||||
stride::NTuple{N,Int}
|
stride::NTuple{N,Int}
|
||||||
pad::NTuple{M,Int}
|
pad::NTuple{M,Int}
|
||||||
dilation::NTuple{N,Int}
|
dilation::NTuple{N,Int}
|
||||||
|
use_bias::Bool
|
||||||
end
|
end
|
||||||
|
|
||||||
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||||
stride = expand(Val(N-2), stride)
|
stride = expand(Val(N-2), stride)
|
||||||
pad = expand(Val(2*(N-2)), pad)
|
pad = expand(Val(2*(N-2)), pad)
|
||||||
dilation = expand(Val(N-2), dilation)
|
dilation = expand(Val(N-2), dilation)
|
||||||
return ConvTranspose(σ, w, b, stride, pad, dilation)
|
return ConvTranspose(σ, w, b, stride, pad, dilation, use_bias)
|
||||||
end
|
end
|
||||||
|
|
||||||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
|
||||||
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
|
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
|
||||||
stride = stride, pad = pad, dilation = dilation)
|
stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
|
||||||
|
|
||||||
@functor ConvTranspose
|
@functor ConvTranspose
|
||||||
|
|
||||||
@ -125,9 +126,13 @@ end
|
|||||||
|
|
||||||
function (c::ConvTranspose)(x::AbstractArray)
|
function (c::ConvTranspose)(x::AbstractArray)
|
||||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
|
||||||
cdims = conv_transpose_dims(c, x)
|
cdims = conv_transpose_dims(c, x)
|
||||||
return σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
if c.use_bias
|
||||||
|
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||||
|
σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
||||||
|
else
|
||||||
|
c.σ.(∇conv_data(x, c.weight, cdims))
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.show(io::IO, l::ConvTranspose)
|
function Base.show(io::IO, l::ConvTranspose)
|
||||||
@ -162,18 +167,19 @@ struct DepthwiseConv{N,M,F,A,V}
|
|||||||
stride::NTuple{N,Int}
|
stride::NTuple{N,Int}
|
||||||
pad::NTuple{M,Int}
|
pad::NTuple{M,Int}
|
||||||
dilation::NTuple{N,Int}
|
dilation::NTuple{N,Int}
|
||||||
|
use_bias::Bool
|
||||||
end
|
end
|
||||||
|
|
||||||
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||||
stride = expand(Val(N-2), stride)
|
stride = expand(Val(N-2), stride)
|
||||||
pad = expand(Val(2*(N-2)), pad)
|
pad = expand(Val(2*(N-2)), pad)
|
||||||
dilation = expand(Val(N-2), dilation)
|
dilation = expand(Val(N-2), dilation)
|
||||||
return DepthwiseConv(σ, w, b, stride, pad, dilation)
|
return DepthwiseConv(σ, w, b, stride, pad, dilation, use_bias)
|
||||||
end
|
end
|
||||||
|
|
||||||
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N
|
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N
|
||||||
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
|
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
|
||||||
return DepthwiseConv(
|
return DepthwiseConv(
|
||||||
init(k..., div(ch[2], ch[1]), ch[1]),
|
init(k..., div(ch[2], ch[1]), ch[1]),
|
||||||
@ -181,16 +187,21 @@ function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ =
|
|||||||
σ;
|
σ;
|
||||||
stride = stride,
|
stride = stride,
|
||||||
pad = pad,
|
pad = pad,
|
||||||
dilation = dilation
|
dilation = dilation,
|
||||||
|
use_bias = use_bias
|
||||||
)
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
@functor DepthwiseConv
|
@functor DepthwiseConv
|
||||||
|
|
||||||
function (c::DepthwiseConv)(x)
|
function (c::DepthwiseConv)(x)
|
||||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
|
||||||
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||||
|
if c.use_bias
|
||||||
|
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||||
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
||||||
|
else
|
||||||
|
c.σ.(depthwiseconv(x, c.weight, cdims))
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.show(io::IO, l::DepthwiseConv)
|
function Base.show(io::IO, l::DepthwiseConv)
|
||||||
@ -234,20 +245,21 @@ struct CrossCor{N,M,F,A,V}
|
|||||||
stride::NTuple{N,Int}
|
stride::NTuple{N,Int}
|
||||||
pad::NTuple{M,Int}
|
pad::NTuple{M,Int}
|
||||||
dilation::NTuple{N,Int}
|
dilation::NTuple{N,Int}
|
||||||
|
use_bias::Bool
|
||||||
end
|
end
|
||||||
|
|
||||||
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||||
stride = expand(Val(N-2), stride)
|
stride = expand(Val(N-2), stride)
|
||||||
pad = expand(Val(2*(N-2)), pad)
|
pad = expand(Val(2*(N-2)), pad)
|
||||||
dilation = expand(Val(N-2), dilation)
|
dilation = expand(Val(N-2), dilation)
|
||||||
return CrossCor(σ, w, b, stride, pad, dilation)
|
return CrossCor(σ, w, b, stride, pad, dilation, use_bias)
|
||||||
end
|
end
|
||||||
|
|
||||||
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
|
||||||
CrossCor(init(k..., ch...), zeros(ch[2]), σ,
|
CrossCor(init(k..., ch...), zeros(ch[2]), σ,
|
||||||
stride = stride, pad = pad, dilation = dilation)
|
stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
|
||||||
|
|
||||||
@functor CrossCor
|
@functor CrossCor
|
||||||
|
|
||||||
@ -259,9 +271,13 @@ end
|
|||||||
function (c::CrossCor)(x::AbstractArray)
|
function (c::CrossCor)(x::AbstractArray)
|
||||||
# TODO: breaks gpu broadcast :(
|
# TODO: breaks gpu broadcast :(
|
||||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
|
||||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||||
|
if c.use_bias
|
||||||
|
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||||
σ.(crosscor(x, c.weight, cdims) .+ b)
|
σ.(crosscor(x, c.weight, cdims) .+ b)
|
||||||
|
else
|
||||||
|
c.σ.(crosscor(x, c.weight, cdims))
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.show(io::IO, l::CrossCor)
|
function Base.show(io::IO, l::CrossCor)
|
||||||
|
Loading…
Reference in New Issue
Block a user