Switched to using NNlib for conv.jl outdims.

This commit is contained in:
Kyle Daruwalla 2019-12-07 13:21:26 -06:00
parent 6265b1fa39
commit a64378b112
2 changed files with 15 additions and 78 deletions

View File

@ -169,16 +169,6 @@ function Base.show(io::IO, l::Diagonal)
print(io, "Diagonal(", length(l.α), ")")
end
"""
outdims(l::Diagonal, isize)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = Diagonal(10)
outdims(m, (10,)) == (10,)
```
"""
outdims(l::Diagonal, isize) = (length(l.α),)
"""
@ -228,16 +218,6 @@ function (mo::Maxout)(input::AbstractArray)
mapreduce(f -> f(input), (acc, out) -> max.(acc, out), mo.over)
end
"""
outdims(c::Maxout, isize)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = Maxout(() -> Conv((3, 3), 3 => 16), 2)
outdims(m, (10, 10)) == (8, 8)
```
"""
outdims(l::Maxout, isize) = outdims(first(l.over), isize)
"""

View File

@ -1,6 +1,8 @@
using NNlib: conv, ∇conv_data, depthwiseconv
using NNlib: conv, ∇conv_data, depthwiseconv, output_size
# pad dims of x with dims of y until ndims(x) == ndims(y)
_paddims(x::Tuple, y::Tuple) = (x..., y[(end - (length(y) - length(x) - 1)):end]...)
_convoutdims(isize, ksize, ssize, pad) = Int.(floor.((isize .- ksize .+ 2 .* pad) ./ ssize .+ 1))
_convtransoutdims(isize, ksize, ssize, pad) = Int.(ssize .* (isize .- 1) .+ ksize .- 2 .* pad)
expand(N, i::Tuple) = i
@ -75,13 +77,16 @@ end
outdims(l::Conv, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
Batch size and channel size are ignored as per `NNlib.jl`.
```julia
m = Conv((3, 3), 3 => 16)
outdims(m, (10, 10)) == (8, 8)
outdims(m, (10, 10, 1, 3)) == (8, 8)
```
"""
outdims(l::Conv{N}, isize) where N = _convoutdims(isize, size(l.weight)[1:N], l.stride, l.pad[1:N])
outdims(l::Conv, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
ConvTranspose(size, in=>out)
@ -156,17 +161,7 @@ end
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
outdims(l::ConvTranspose, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = ConvTranspose((3, 3), 3 => 16)
outdims(m, (8, 8)) == (10, 10)
```
"""
outdims(l::ConvTranspose{N}, isize) where N = _convtransoutdims(isize, size(l.weight)[1:N], l.stride, l.pad[1:N])
outdims(l::ConvTranspose{N}, isize) where N = _convtransoutdims(isize[1:2], size(l.weight)[1:N], l.stride, l.pad[1:N])
"""
DepthwiseConv(size, in=>out)
@ -232,17 +227,8 @@ end
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
outdims(l::DepthwiseConv, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = DepthwiseConv((3, 3), 3 => 6)
outdims(m, (10, 10)) == (8, 8)
```
"""
outdims(l::DepthwiseConv{N}, isize) where N = _convoutdims(isize, size(l.weight)[1:N], l.stride, l.pad[1:N])
outdims(l::DepthwiseConv, isize) =
output_size(DepthwiseConvDims(_paddims(isize, (1, 1, size(l.weight)[end], 1)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
CrossCor(size, in=>out)
@ -315,17 +301,8 @@ end
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
outdims(l::CrossCor, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = CrossCor((3, 3), 3 => 16)
outdims(m, (10, 10)) == (8, 8)
```
"""
outdims(l::CrossCor{N}, isize) where N = _convoutdims(isize, size(l.weight)[1:N], l.stride, l.pad[1:N])
outdims(l::CrossCor, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
MaxPool(k)
@ -356,17 +333,7 @@ function Base.show(io::IO, m::MaxPool)
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
"""
outdims(l::MaxPool, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = MaxPool((2, 2))
outdims(m, (10, 10)) == (5, 5)
```
"""
outdims(l::MaxPool{N}, isize) where N = _convoutdims(isize, l.k, l.stride, l.pad[1:N])
outdims(l::MaxPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))
"""
MeanPool(k)
@ -396,14 +363,4 @@ function Base.show(io::IO, m::MeanPool)
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
"""
outdims(l::MeanPool, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = MeanPool((2, 2))
outdims(m, (10, 10)) == (5, 5)
```
"""
outdims(l::MeanPool{N}, isize) where N = _convoutdims(isize, l.k, l.stride, l.pad[1:N])
outdims(l::MeanPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))