use new session and store params back in the model
This commit is contained in:
parent
8db7df3f51
commit
a6fe1f3810
@ -76,3 +76,9 @@ function makesession(model, n)
|
||||
run(sess, initialize_all_variables())
|
||||
sess, params, inputs, output
|
||||
end
|
||||
|
||||
function storeparams!(sess, params)
|
||||
for (p, t) in params
|
||||
p.x = run(sess, t)
|
||||
end
|
||||
end
|
||||
|
@ -47,19 +47,20 @@ end
|
||||
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
|
||||
|
||||
function Flux.train!(m::SeqModel, Xs, Ys; epoch = 1, η = 0.1,
|
||||
loss = (y, ŷ) -> -reduce_sum(y .* log2(ŷ)),
|
||||
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||
loss = (y, ŷ) -> -reduce_sum(y .* log(ŷ)),
|
||||
opt = () -> TensorFlow.train.GradientDescentOptimizer(η))
|
||||
batchlen, seqlen = length(first(Xs)), length(first(Xs)[1])
|
||||
state = batchone.(m.m.model.state)
|
||||
sess, params, (instates, input), (outstates, output) = makesession(m.m.model)
|
||||
Y = placeholder(Float32)
|
||||
Loss = loss(Y, m.m.output[end])/batchlen/seqlen
|
||||
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||
Loss = loss(Y, output)/batchlen/seqlen
|
||||
minimize_op = TensorFlow.train.minimize(opt(), Loss)
|
||||
for e in 1:epoch
|
||||
info("Epoch $e\n")
|
||||
@progress for (i, (x, y)) in enumerate(zip(Xs,Ys))
|
||||
out = run(m.m.session, vcat(m.m.output..., Loss, minimize_op),
|
||||
merge(Dict(m.m.inputs[end]=>batchone(x), Y=>batchone(y)),
|
||||
Dict(zip(m.m.inputs[1:end-1], state))))
|
||||
out = run(sess, vcat(outstates..., output, Loss, minimize_op),
|
||||
merge(Dict(input=>batchone(x), Y=>batchone(y)),
|
||||
Dict(zip(instates, state))))
|
||||
state = out[1:length(state)]
|
||||
loss = out[end-1]
|
||||
isnan(loss) && error("Loss is NaN")
|
||||
@ -67,4 +68,6 @@ function Flux.train!(m::SeqModel, Xs, Ys; epoch = 1, η = 0.1,
|
||||
(i-1) % 10 == 0 && @show loss
|
||||
end
|
||||
end
|
||||
storeparams!(sess, params)
|
||||
return
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user