1.0 fix for conv transpose
This commit is contained in:
parent
a32c8a2e60
commit
a71ee386d0
|
@ -6,7 +6,7 @@ using Base: tail
|
|||
using MacroTools, Juno, Requires, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, MaxPool, MeanPool,
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
|
||||
DepthwiseConv, Dropout, LayerNorm, BatchNorm,
|
||||
params, mapleaves, cpu, gpu
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
using NNlib: conv, depthwiseconv
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
|
||||
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
|
||||
|
||||
|
@ -51,6 +51,7 @@ function Base.show(io::IO, l::Conv)
|
|||
print(io, ")")
|
||||
end
|
||||
|
||||
<<<<<<< HEAD
|
||||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
|
@ -77,6 +78,7 @@ struct DepthwiseConv{N,F,A,V}
|
|||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
|
@ -108,6 +110,46 @@ function Base.show(io::IO, l::DepthwiseConv)
|
|||
print(io, ")")
|
||||
end
|
||||
|
||||
"""
|
||||
ConvTranspose(size, in=>out)
|
||||
ConvTranspose(size, in=>out, relu)
|
||||
|
||||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct ConvTranspose{N,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N} =
|
||||
ConvTranspose(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
|
||||
|
||||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
|
||||
stride = 1, pad = 0, dilation = 1) where N =
|
||||
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
|
||||
@treelike ConvTranspose
|
||||
|
||||
function (c::ConvTranspose)(x)
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(∇conv_data(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::ConvTranspose)
|
||||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
end
|
||||
|
||||
"""
|
||||
MaxPool(k)
|
||||
|
||||
|
|
|
@ -356,7 +356,7 @@ x::TrackedVector * y::TrackedVector = track(*, x, y)
|
|||
# NNlib
|
||||
|
||||
using NNlib
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, depthwiseconv, maxpool, meanpool
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, ∇conv_data, depthwiseconv, maxpool, meanpool
|
||||
|
||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||
|
||||
|
@ -386,6 +386,16 @@ conv(x::TrackedArray, w::AbstractArray; kw...) = track(conv, x, w; kw...)
|
|||
(NNlib.∇conv_data(data.((Δ, x, w))...; kw...),
|
||||
NNlib.∇conv_filter(data.((Δ, x, w))...; kw...)))
|
||||
|
||||
∇conv_data(x::TrackedArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
∇conv_data(x::AbstractArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
∇conv_data(x::TrackedArray, w::AbstractArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
|
||||
@grad ∇conv_data(x, w; kw...) =
|
||||
∇conv_data(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:conv,
|
||||
(NNlib.conv(data.((x, Δ, w))...; kw...),
|
||||
NNlib.∇conv_filter(data.((x, Δ, w))...; kw...)))
|
||||
|
||||
maxpool(x::TrackedArray, k; kw...) = track(maxpool, x, k; kw...)
|
||||
|
||||
@grad function maxpool(x, k; kw...)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using Flux
|
||||
using Flux.Tracker, Test, NNlib
|
||||
using Flux.Tracker: TrackedReal, gradcheck, grad, checkpoint
|
||||
using NNlib: conv, depthwiseconv
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
using Printf: @sprintf
|
||||
using LinearAlgebra: diagm, dot, LowerTriangular, norm
|
||||
using Statistics: mean, std
|
||||
|
@ -182,12 +182,16 @@ end
|
|||
2y + x
|
||||
end
|
||||
|
||||
@test gradtest(conv, rand(10, 3, 2), randn(Float64,2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64,2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 3, 2), randn(Float64, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64, 2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 3, 2))
|
||||
|
||||
@test gradtest(depthwiseconv, rand(10,10,3,2), randn(2, 2, 2, 3))
|
||||
|
||||
@test gradtest(∇conv_data, rand(10, 3, 2), randn(Float64, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64, 2, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 2, 3))
|
||||
|
||||
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> maxpool(x, (2,2,2)), rand(10, 10, 10, 3, 2))
|
||||
|
||||
|
|
Loading…
Reference in New Issue