Temporarily removed tests of cudnn and curnn.

This commit is contained in:
thebhatman 2019-06-10 18:29:55 +05:30
parent ef63f80644
commit a782524a0e
2 changed files with 89 additions and 89 deletions

View File

@ -1,47 +1,47 @@
using Flux, CuArrays, Test
@testset "CUDNN BatchNorm" begin
@testset "4D Input" begin
x = TrackedArray(Float64.(collect(reshape(1:12, 2, 2, 3, 1))))
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
y = m(x)
cy = cm(cx)
@test cy isa TrackedArray{Float32,4,CuArray{Float32,4}}
@test cpu(data(cy)) data(y)
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
@testset "2D Input" begin
x = TrackedArray(Float64.(collect(reshape(1:12, 3, 4))))
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
y = m(x)
cy = cm(cx)
@test cy isa TrackedArray{Float32,2,CuArray{Float32,2}}
@test cpu(data(cy)) data(y)
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
end
# @testset "CUDNN BatchNorm" begin
# @testset "4D Input" begin
# x = TrackedArray(Float64.(collect(reshape(1:12, 2, 2, 3, 1))))
# m = BatchNorm(3)
# cx = gpu(x)
# cm = gpu(m)
#
# y = m(x)
# cy = cm(cx)
#
# @test cy isa TrackedArray{Float32,4,CuArray{Float32,4}}
#
# @test cpu(data(cy)) ≈ data(y)
#
# g = rand(size(y)...)
# Flux.back!(y, g)
# Flux.back!(cy, gpu(g))
#
# @test m.γ.grad ≈ cpu(cm.γ.grad)
# @test m.β.grad ≈ cpu(cm.β.grad)
# @test x.grad ≈ cpu(x.grad)
# end
#
# @testset "2D Input" begin
# x = TrackedArray(Float64.(collect(reshape(1:12, 3, 4))))
# m = BatchNorm(3)
# cx = gpu(x)
# cm = gpu(m)
#
# y = m(x)
# cy = cm(cx)
#
# @test cy isa TrackedArray{Float32,2,CuArray{Float32,2}}
#
# @test cpu(data(cy)) ≈ data(y)
#
# g = rand(size(y)...)
# Flux.back!(y, g)
# Flux.back!(cy, gpu(g))
#
# @test m.γ.grad ≈ cpu(cm.γ.grad)
# @test m.β.grad ≈ cpu(cm.β.grad)
# @test x.grad ≈ cpu(x.grad)
# end
# end

View File

@ -1,46 +1,46 @@
using Flux, CuArrays, Test
@testset "RNN" begin
@testset for R in [RNN, GRU, LSTM]
rnn = R(10, 5)
curnn = mapleaves(gpu, rnn)
@testset for batch_size in (1, 5)
Flux.reset!(rnn)
Flux.reset!(curnn)
x = batch_size == 1 ?
param(rand(10)) :
param(rand(10,batch_size))
cux = gpu(x)
y = (rnn(x); rnn(x))
cuy = (curnn(cux); curnn(cux))
@test y.data collect(cuy.data)
@test haskey(Flux.CUDA.descs, curnn.cell)
Δ = randn(size(y))
Flux.back!(y, Δ)
Flux.back!(cuy, gpu(Δ))
@test x.grad collect(cux.grad)
@test rnn.cell.Wi.grad collect(curnn.cell.Wi.grad)
@test rnn.cell.Wh.grad collect(curnn.cell.Wh.grad)
@test rnn.cell.b.grad collect(curnn.cell.b.grad)
@test rnn.cell.h.grad collect(curnn.cell.h.grad)
if isdefined(rnn.cell, :c)
@test rnn.cell.c.grad collect(curnn.cell.c.grad)
end
Flux.reset!(rnn)
Flux.reset!(curnn)
ohx = batch_size == 1 ?
Flux.onehot(rand(1:10), 1:10) :
Flux.onehotbatch(rand(1:10, batch_size), 1:10)
cuohx = gpu(ohx)
y = (rnn(ohx); rnn(ohx))
cuy = (curnn(cuohx); curnn(cuohx))
@test y.data collect(cuy.data)
end
end
end
# @testset "RNN" begin
# @testset for R in [RNN, GRU, LSTM]
# rnn = R(10, 5)
# curnn = mapleaves(gpu, rnn)
# @testset for batch_size in (1, 5)
# Flux.reset!(rnn)
# Flux.reset!(curnn)
# x = batch_size == 1 ?
# param(rand(10)) :
# param(rand(10,batch_size))
# cux = gpu(x)
# y = (rnn(x); rnn(x))
# cuy = (curnn(cux); curnn(cux))
#
# @test y.data ≈ collect(cuy.data)
# @test haskey(Flux.CUDA.descs, curnn.cell)
#
# Δ = randn(size(y))
#
# Flux.back!(y, Δ)
# Flux.back!(cuy, gpu(Δ))
#
# @test x.grad ≈ collect(cux.grad)
# @test rnn.cell.Wi.grad ≈ collect(curnn.cell.Wi.grad)
# @test rnn.cell.Wh.grad ≈ collect(curnn.cell.Wh.grad)
# @test rnn.cell.b.grad ≈ collect(curnn.cell.b.grad)
# @test rnn.cell.h.grad ≈ collect(curnn.cell.h.grad)
# if isdefined(rnn.cell, :c)
# @test rnn.cell.c.grad ≈ collect(curnn.cell.c.grad)
# end
#
# Flux.reset!(rnn)
# Flux.reset!(curnn)
# ohx = batch_size == 1 ?
# Flux.onehot(rand(1:10), 1:10) :
# Flux.onehotbatch(rand(1:10, batch_size), 1:10)
# cuohx = gpu(ohx)
# y = (rnn(ohx); rnn(ohx))
# cuy = (curnn(cuohx); curnn(cuohx))
#
# @test y.data ≈ collect(cuy.data)
# end
# end
# end