remove old recurrence code

This commit is contained in:
Mike J Innes 2017-03-27 18:24:02 +01:00
parent 05ac3855f4
commit abe66d398f
2 changed files with 0 additions and 84 deletions

View File

@ -1,83 +0,0 @@
# TODO: refactor, some of this is more general than just the TF backend
struct SeqModel
m::Model
state::Any
end
cgroup(xs...) = DataFlow.group(map(constant, xs)...)
function makesession(model::Flux.Unrolled)
sess = Session(Graph())
input = placeholder(Float32)
inputs = TensorFlow.unpack(input, num = model.steps, axis = 1)
let params, stacks, outputs, instates, outstates
if model.stateful
instates = [placeholder(Float32) for _ in model.state]
params, stacks, (outstates, outputs) = tograph(model, cgroup(instates...), cgroup(inputs...))
else
params, stacks, outputs = tograph(model, cgroup(inputs...))
end
output = TensorFlow.pack(outputs, axis = 1)
run(sess, initialize_all_variables())
sess, params, stacks, (instates, input), (outstates, output)
end
end
function tf(model::Flux.Unrolled)
sess, params, stacks, (instates, input), (outstates, output) = makesession(model)
SeqModel(
Model(model, sess, params, stacks,
[instates..., input], [outstates..., output]),
model.state)
end
function batchseq(xs)
dims = ndims(xs)-2
T = Array{eltype(xs),dims}
S = Array{eltype(xs),dims+1}
B = Array{eltype(xs),dims+2}
Batch{Seq{T,S},B}(xs)
end
batchseq(xs::Batch) = batchseq(rawbatch(xs))
TensorFlow.get_tensors(x::Tuple) = TensorFlow.get_tensors(collect(x))
function (m::SeqModel)(x::BatchSeq)
m.m.model.stateful || return batchseq(runmodel(m.m, x)[end])
if isempty(m.state) || length(first(m.state)) length(x)
m.state = batchone.(m.m.model.state)
end
output = runmodel(m.m, m.state..., x)
m.state, output = output[1:end-1], output[end]
return batchseq(output)
end
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
function Flux.train!(m::SeqModel, Xs, Ys; epoch = 1, η = 0.1,
loss = (y, ) -> -reduce_sum(y .* log()),
opt = () -> TensorFlow.train.GradientDescentOptimizer(η))
batchlen, seqlen = length(first(Xs)), length(first(Xs)[1])
state = batchone.(m.m.model.state)
sess, params, stacks, (instates, input), (outstates, output) = makesession(m.m.model)
Y = placeholder(Float32)
Loss = loss(Y, output)/batchlen/seqlen
minimize_op = TensorFlow.train.minimize(opt(), Loss)
@progress "training" for e in 1:epoch
info("Epoch $e\n")
@progress "epoch" for (i, (x, y)) in enumerate(zip(Xs,Ys))
out = run(sess, vcat(outstates..., output, Loss, minimize_op),
merge(Dict(input=>batchone(x), Y=>batchone(y)),
Dict(zip(instates, state))))
state = out[1:length(state)]
loss = out[end-1]
isnan(loss) && error("Loss is NaN")
isinf(loss) && error("Loss is Inf")
(i-1) % 10 == 0 && @show loss
end
end
storeparams!(sess, params)
return
end

View File

@ -16,6 +16,5 @@ Flux.shape(op::Op, d...) = op.shape(d...)
include("graph.jl")
include("model.jl")
include("recurrent.jl")
end