basic forward pass
This commit is contained in:
parent
0b886507dc
commit
b1bb05403c
|
@ -37,74 +37,123 @@ const RNN_ALGO_STANDARD = 0
|
|||
const RNN_ALGO_PERSIST_STATIC = 1
|
||||
const RNN_ALGO_PERSIST_DYNAMIC = 2
|
||||
|
||||
mutable struct RNNDesc
|
||||
T::Type
|
||||
# param layout:
|
||||
# RNN: [weight, bias] × [input, hidden]
|
||||
# GRU: [weight, bias] × [input, hidden] × [reset, update, newmem]
|
||||
# LSTM: [weight, bias] × [input, hidden] × [input, forget, newmem, output]
|
||||
|
||||
weightsizes(input, hidden, n = 1) = [(in,hidden) for in in (input, hidden) for gate in 1:n]
|
||||
biassizes(input, hidden, n = 1) = [(hidden,) for gate in 1:n]
|
||||
|
||||
function params(w::CuVector{T}, input, hidden, n = 1) where T
|
||||
weights = CuMatrix{T}[]
|
||||
biases = CuVector{T}[]
|
||||
offset = 0
|
||||
for p in weightsizes(input, hidden, n)
|
||||
push!(weights, reshape(w[offset+(1:prod(p))], p))
|
||||
offset += prod(p)
|
||||
end
|
||||
for p in biassizes(input, hidden, n)
|
||||
push!(biases, w[offset+(1:prod(p))])
|
||||
offset += prod(p)
|
||||
end
|
||||
return weights, biases
|
||||
end
|
||||
|
||||
mutable struct RNNDesc{T}
|
||||
mode::Int
|
||||
input::Int
|
||||
hidden::Int
|
||||
params::CuVector{T}
|
||||
weights::Vector{CuMatrix{T}}
|
||||
biases::Vector{CuVector{T}}
|
||||
ptr::Ptr{Void}
|
||||
end
|
||||
|
||||
Base.unsafe_convert(::Type{Ptr{Void}}, d::RNNDesc) = d.ptr
|
||||
|
||||
function RNNDesc(T::Type, mode::Int, input::Int, hidden::Int; layers = 1)
|
||||
function rnnParamSize(T, r, input)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Csize_t},Cint),
|
||||
libcudnn_handle[], r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T))
|
||||
return Int(size[])÷sizeof(T)
|
||||
end
|
||||
|
||||
function RNNDesc{T}(mode::Int, input::Int, hidden::Int; layers = 1) where T
|
||||
d = [C_NULL]
|
||||
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Void}},),d)
|
||||
rd = RNNDesc(T, input, hidden, d[])
|
||||
finalizer(rd, x ->
|
||||
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
|
||||
|
||||
dropoutDesc = DropoutDesc(0)
|
||||
inputMode = LINEAR_INPUT
|
||||
direction = UNIDIRECTIONAL
|
||||
algo = RNN_ALGO_STANDARD
|
||||
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Cint,Ptr{Void},Cint,Cint,Cint,Cint,Cint),
|
||||
libcudnn_handle[],rd,hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(rd.T))
|
||||
libcudnn_handle[],d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T))
|
||||
|
||||
w = cuzeros(T, rnnParamSize(T, d[], 10))
|
||||
ngates = [1, 1, 4, 3][mode+1]
|
||||
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates)..., d[])
|
||||
finalizer(rd, x ->
|
||||
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
|
||||
return rd
|
||||
end
|
||||
|
||||
function rnnWorkspaceSize(r::RNNDesc)
|
||||
function rnnWorkspaceSize(r::RNNDesc, seqlen, xdesc)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Ptr{Void}},Ptr{Csize_t}),
|
||||
libcudnn_handle[], r, 1, [TensorDesc(r.T, (1,r.input,1))], size)
|
||||
libcudnn_handle[], r, seqlen, xdesc, size)
|
||||
return Int(size[])
|
||||
end
|
||||
|
||||
function rnnTrainingReserveSize(r::RNNDesc)
|
||||
function rnnTrainingReserveSize(r::RNNDesc, seqlen, xdesc)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Void}, Ptr{Void}, Cint, Ptr{Ptr{Void}}, Ptr{Csize_t}),
|
||||
libcudnn_handle[], r, 1, [TensorDesc(r.T, (1,r.input,1))], size)
|
||||
libcudnn_handle[], r, seqlen, xdesc, size)
|
||||
return Int(size[])
|
||||
end
|
||||
|
||||
function rnnParamSize(r::RNNDesc)
|
||||
size = Csize_t[0]
|
||||
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Csize_t},Cint),
|
||||
libcudnn_handle[], r, TensorDesc(r.T, (1,r.input,1)), size, cudnnDataType(r.T))
|
||||
return Int(size[])÷sizeof(r.T)
|
||||
end
|
||||
|
||||
# param layout:
|
||||
# RNN: [weight, bias] × [input, hidden]
|
||||
# GRU: [weight, bias] × [input, hidden] × [reset, update, newmem]
|
||||
# LSTM: [weight, bias] × [input, hidden] × [input, forget, newmem, output]
|
||||
|
||||
function rnnMatrixOffset(r::RNNDesc, w::CuArray, param; layer = 1)
|
||||
ptr = [C_NULL]
|
||||
desc = FilterDesc(CuArrays.CUDNN.createFilterDesc())
|
||||
@check ccall((:cudnnGetRNNLinLayerMatrixParams,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Void},Ptr{Void},Ptr{Void},Cint,Ptr{Void},Ptr{Ptr{Void}}),
|
||||
libcudnn_handle[], r, layer-1, TensorDesc(r.T, (1,r.input,1)), FilterDesc(reshape(w, 1, 1, :)), w, param-1, desc, ptr)
|
||||
offset = ptr[]-Base.cconvert(Ptr{Void},w).ptr
|
||||
CuArrays.CUDNN.free(desc)
|
||||
return Int(offset)÷sizeof(r.T)
|
||||
end
|
||||
|
||||
function rnnBiasOffset(r::RNNDesc, w::CuArray, param; layer = 1)
|
||||
ptr = [C_NULL]
|
||||
desc = FilterDesc(CuArrays.CUDNN.createFilterDesc())
|
||||
@check ccall((:cudnnGetRNNLinLayerBiasParams,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Void},Ptr{Void},Ptr{Void},Cint,Ptr{Void},Ptr{Ptr{Void}}),
|
||||
libcudnn_handle[], r, layer-1, TensorDesc(r.T, (1,r.input,1)), FilterDesc(reshape(w, 1, 1, :)), w, param-1, desc, ptr)
|
||||
offset = ptr[]-Base.cconvert(Ptr{Void},w).ptr
|
||||
dims = size(desc)
|
||||
CuArrays.CUDNN.free(desc)
|
||||
return Int(offset)÷sizeof(r.T)
|
||||
function forwardInference(rnn::RNNDesc{T}, x, h, c = nothing) where T
|
||||
@assert size(x, 1) == rnn.input
|
||||
@assert size(h, 1) == rnn.hidden
|
||||
@assert size(x, 2) == size(h, 2)
|
||||
seqLength = 1
|
||||
xdesc = [TensorDesc(reshape(x, 1, size(x, 1), size(x, 2)))]
|
||||
y = x isa AbstractVector ? similar(x, rnn.hidden) : similar(x, rnn.hidden, size(x, 2))
|
||||
ydesc = [TensorDesc(reshape(y, 1, size(y, 1), size(y, 2)))]
|
||||
hout = similar(h)
|
||||
workspace = CuVector{UInt8}(rnnWorkspaceSize(rnn, seqLength, xdesc)) # TODO: reuse this
|
||||
if c ≠ nothing
|
||||
@assert size(c, 1) == rnn.hidden
|
||||
@assert size(c, 2) == size(h, 2)
|
||||
cptr = c
|
||||
cdesc = TensorDesc(reshape(c, size(c, 1), size(c, 2), 1))
|
||||
cout = similar(c)
|
||||
coutdesc = TensorDesc(reshape(cout, size(cout, 1), size(cout, 2), 1))
|
||||
else
|
||||
cptr = cdesc = cout = coutdesc = C_NULL
|
||||
end
|
||||
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
|
||||
(Ptr{Void}, Ptr{Void}, Cint,
|
||||
Ptr{Ptr{Void}}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Ptr{Void}}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Ptr{T},
|
||||
Ptr{Void}, Csize_t),
|
||||
libcudnn_handle[], rnn, seqLength,
|
||||
xdesc, x,
|
||||
TensorDesc(reshape(h, size(h, 1), size(h, 2), 1)), h,
|
||||
cdesc, cptr,
|
||||
TensorDesc(reshape(rnn.params, 1, 1, :)), rnn.params,
|
||||
ydesc, y,
|
||||
TensorDesc(reshape(hout, size(hout, 1), size(hout, 2), 1)), hout,
|
||||
coutdesc, cout,
|
||||
workspace, length(workspace))
|
||||
if c == nothing
|
||||
return y, hout
|
||||
else
|
||||
return y, hout, cout
|
||||
end
|
||||
end
|
||||
|
|
|
@ -21,3 +21,5 @@ cm = cu(m)
|
|||
@test cm(cu(rand(10, 10))) isa TrackedArray{Float32,2,CuArray{Float32,2}}
|
||||
|
||||
end
|
||||
|
||||
CuArrays.cudnn_available() && include("cudnn.jl")
|
|
@ -0,0 +1,32 @@
|
|||
using Flux, CuArrays, Base.Test
|
||||
using Flux.CUDA
|
||||
using Flux.CUDA: RNNDesc, RNN_TANH, RNN_RELU
|
||||
|
||||
info("Testing Flux/CUDNN")
|
||||
|
||||
function randinit(r::RNNDesc{T}) where T
|
||||
for w in r.weights
|
||||
copy!(w, randn(T, size(w)))
|
||||
end
|
||||
for w in r.biases
|
||||
copy!(w, randn(T, size(w)))
|
||||
end
|
||||
end
|
||||
|
||||
function test_forward(rnn::RNNDesc, x, h, c = nothing)
|
||||
if rnn.mode == RNN_RELU
|
||||
Wx, Wh = rnn.weights
|
||||
b, = rnn.biases
|
||||
h′ = relu.(Wx'*x .+ Wh'*h .+ b)
|
||||
return h′, h′
|
||||
end
|
||||
end
|
||||
|
||||
@testset "CUDNN" begin
|
||||
|
||||
rnn = RNNDesc{Float32}(RNN_RELU, 10, 5)
|
||||
randinit(rnn)
|
||||
x, h = cu(rand(10)), cu(rand(5))
|
||||
@test collect(test_forward(rnn, x, h)[1]) ≈ collect(CUDA.forwardInference(rnn, x, h)[1])
|
||||
|
||||
end
|
|
@ -10,7 +10,7 @@ include("optimise.jl")
|
|||
include("data.jl")
|
||||
|
||||
if Base.find_in_path("CuArrays") ≠ nothing
|
||||
include("cuarrays.jl")
|
||||
include("cuda/cuda.jl")
|
||||
end
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue