cross entropy loss, loss checks
This commit is contained in:
parent
3b70ea6a42
commit
b443425c6d
@ -46,20 +46,25 @@ end
|
|||||||
|
|
||||||
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
|
(m::SeqModel)(x::Seq) = first(m(batchone(x)))
|
||||||
|
|
||||||
function Flux.train!(m::SeqModel, train; epoch = 1, η = 0.1,
|
function Flux.train!(m::SeqModel, Xs, Ys; epoch = 1, η = 0.1,
|
||||||
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
loss = (y, ŷ) -> -reduce_sum(y .* log2(ŷ)),
|
||||||
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||||
|
batchlen, seqlen = length(first(Xs)), length(first(Xs)[1])
|
||||||
state = batchone.(m.m.model.state)
|
state = batchone.(m.m.model.state)
|
||||||
Y = placeholder(Float32)
|
Y = placeholder(Float32)
|
||||||
Loss = loss(m.m.output[end], Y)
|
Loss = loss(Y, m.m.output[end])/batchlen/seqlen
|
||||||
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||||
for e in 1:epoch
|
for e in 1:epoch
|
||||||
info("Epoch $e\n")
|
info("Epoch $e\n")
|
||||||
@progress for (x, y) in train
|
@progress for (i, (x, y)) in enumerate(zip(Xs,Ys))
|
||||||
out = run(m.m.session, vcat(m.m.output..., Loss, minimize_op),
|
out = run(m.m.session, vcat(m.m.output..., Loss, minimize_op),
|
||||||
merge(Dict(m.m.inputs[end]=>batchone(x), Y=>batchone(y)),
|
merge(Dict(m.m.inputs[end]=>batchone(x), Y=>batchone(y)),
|
||||||
Dict(zip(m.m.inputs[1:end-1], state))))
|
Dict(zip(m.m.inputs[1:end-1], state))))
|
||||||
state = out[1:length(state)]
|
state = out[1:length(state)]
|
||||||
|
loss = out[end-1]
|
||||||
|
isnan(loss) && error("Loss is NaN")
|
||||||
|
isinf(loss) && error("Loss is Inf")
|
||||||
|
(i-1) % 10 == 0 && @show loss
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user