build based on 240ab11

This commit is contained in:
zeptodoctor 2020-03-22 06:56:09 +00:00
parent a3d08c41c8
commit c0046f14bd
18 changed files with 43 additions and 43 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -37,4 +37,4 @@ julia> onecold(ans, [:a, :b, :c])
3-element Array{Symbol,1}:
:b
:a
:b</code></pre><p>Note that these operations returned <code>OneHotVector</code> and <code>OneHotMatrix</code> rather than <code>Array</code>s. <code>OneHotVector</code>s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../models/nnlib/">« NNlib</a><a class="docs-footer-nextpage" href="../dataloader/">DataLoader »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
:b</code></pre><p>Note that these operations returned <code>OneHotVector</code> and <code>OneHotMatrix</code> rather than <code>Array</code>s. <code>OneHotVector</code>s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../models/nnlib/">« NNlib</a><a class="docs-footer-nextpage" href="../dataloader/">DataLoader »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

File diff suppressed because one or more lines are too long

View File

@ -47,4 +47,4 @@ julia&gt; x |&gt; cpu
10-element Array{Float32,1}:
0.235164
0.192538</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../training/training/">« Training</a><a class="docs-footer-nextpage" href="../saving/">Saving &amp; Loading »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
0.192538</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../training/training/">« Training</a><a class="docs-footer-nextpage" href="../saving/">Saving &amp; Loading »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

File diff suppressed because one or more lines are too long

View File

@ -24,4 +24,4 @@ Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.66245
)
ps = Flux.params(m[3:end])</code></pre><p>The <code>Zygote.Params</code> object <code>ps</code> now holds a reference to only the parameters of the layers passed to it.</p><p>During training, the gradients will only be computed for (and applied to) the last <code>Dense</code> layer, therefore only that would have its parameters changed.</p><p><code>Flux.params</code> also takes multiple inputs to make it easy to collect parameters from heterogenous models with a single call. A simple demonstration would be if we wanted to omit optimising the second <code>Dense</code> layer in the previous example. It would look something like this:</p><pre><code class="language-julia">Flux.params(m[1], m[3:end])</code></pre><p>Sometimes, a more fine-tuned control is needed. We can freeze a specific parameter of a specific layer which already entered a <code>Params</code> object <code>ps</code>, by simply deleting it from <code>ps</code>:</p><pre><code class="language-julia">ps = params(m)
delete!(ps, m[2].b) </code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../layers/">« Model Reference</a><a class="docs-footer-nextpage" href="../nnlib/">NNlib »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
delete!(ps, m[2].b) </code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../layers/">« Model Reference</a><a class="docs-footer-nextpage" href="../nnlib/">NNlib »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -110,4 +110,4 @@ model2(rand(10)) # =&gt; 2-element vector</code></pre><p>This quickly starts to
m(rand(10))</code></pre><p>Likewise, <code>Chain</code> will happily work with any Julia function.</p><pre><code class="language-julia">m = Chain(x -&gt; x^2, x -&gt; x+1)
m(5) # =&gt; 26</code></pre><h2 id="Layer-helpers-1"><a class="docs-heading-anchor" href="#Layer-helpers-1">Layer helpers</a><a class="docs-heading-anchor-permalink" href="#Layer-helpers-1" title="Permalink"></a></h2><p>Flux provides a set of helpers for custom layers, which you can enable by calling</p><pre><code class="language-julia">Flux.@functor Affine</code></pre><p>This enables a useful extra set of functionality for our <code>Affine</code> layer, such as <a href="../../training/optimisers/">collecting its parameters</a> or <a href="../../gpu/">moving it to the GPU</a>.</p><p>For some more helpful tricks, including parameter freezing, please checkout the <a href="models/advacned.md">advanced usage guide</a>.</p><h2 id="Utility-functions-1"><a class="docs-heading-anchor" href="#Utility-functions-1">Utility functions</a><a class="docs-heading-anchor-permalink" href="#Utility-functions-1" title="Permalink"></a></h2><p>Flux provides some utility functions to help you generate models in an automated fashion.</p><p><code>outdims</code> enables you to calculate the spatial output dimensions of layers like <code>Conv</code> when applied to input images of a given size. Currently limited to the following layers:</p><ul><li><code>Chain</code></li><li><code>Dense</code></li><li><code>Conv</code></li><li><code>Diagonal</code></li><li><code>Maxout</code></li><li><code>ConvTranspose</code></li><li><code>DepthwiseConv</code></li><li><code>CrossCor</code></li><li><code>MaxPool</code></li><li><code>MeanPool</code></li></ul><div class="admonition is-warning"><header class="admonition-header">Missing docstring.</header><div class="admonition-body"><p>Missing docstring for <code>outdims</code>. Check Documenter&#39;s build log for details.</p></div></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../">« Home</a><a class="docs-footer-nextpage" href="../recurrence/">Recurrence »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
m(5) # =&gt; 26</code></pre><h2 id="Layer-helpers-1"><a class="docs-heading-anchor" href="#Layer-helpers-1">Layer helpers</a><a class="docs-heading-anchor-permalink" href="#Layer-helpers-1" title="Permalink"></a></h2><p>Flux provides a set of helpers for custom layers, which you can enable by calling</p><pre><code class="language-julia">Flux.@functor Affine</code></pre><p>This enables a useful extra set of functionality for our <code>Affine</code> layer, such as <a href="../../training/optimisers/">collecting its parameters</a> or <a href="../../gpu/">moving it to the GPU</a>.</p><p>For some more helpful tricks, including parameter freezing, please checkout the <a href="models/advacned.md">advanced usage guide</a>.</p><h2 id="Utility-functions-1"><a class="docs-heading-anchor" href="#Utility-functions-1">Utility functions</a><a class="docs-heading-anchor-permalink" href="#Utility-functions-1" title="Permalink"></a></h2><p>Flux provides some utility functions to help you generate models in an automated fashion.</p><p><code>outdims</code> enables you to calculate the spatial output dimensions of layers like <code>Conv</code> when applied to input images of a given size. Currently limited to the following layers:</p><ul><li><code>Chain</code></li><li><code>Dense</code></li><li><code>Conv</code></li><li><code>Diagonal</code></li><li><code>Maxout</code></li><li><code>ConvTranspose</code></li><li><code>DepthwiseConv</code></li><li><code>CrossCor</code></li><li><code>MaxPool</code></li><li><code>MeanPool</code></li></ul><div class="admonition is-warning"><header class="admonition-header">Missing docstring.</header><div class="admonition-body"><p>Missing docstring for <code>outdims</code>. Check Documenter&#39;s build log for details.</p></div></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../">« Home</a><a class="docs-footer-nextpage" href="../recurrence/">Recurrence »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

File diff suppressed because one or more lines are too long

View File

@ -28,4 +28,4 @@ a = randomly sampled from uniform distribution U(l, u)</code></pre><p>Randomized
batched_adjoint(A)</code></pre><p>Equivalent to applying <code>transpose</code> or <code>adjoint</code> to each matrix <code>A[:,:,k]</code>.</p><p>These exist to control how <code>batched_mul</code> behaves, as it operated on such matrix slices of an array with <code>ndims(A)==3</code>.</p><pre><code class="language-none">BatchedTranspose{T, N, S} &lt;: AbstractBatchedMatrix{T, N}
BatchedAdjoint{T, N, S}</code></pre><p>Lazy wrappers analogous to <code>Transpose</code> and <code>Adjoint</code>, returned by <code>batched_transpose</code></p></div></section></article><article class="docstring"><header><a class="docstring-binding" id="NNlib.batched_transpose" href="#NNlib.batched_transpose"><code>NNlib.batched_transpose</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">batched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)</code></pre><p>Equivalent to applying <code>transpose</code> or <code>adjoint</code> to each matrix <code>A[:,:,k]</code>.</p><p>These exist to control how <code>batched_mul</code> behaves, as it operated on such matrix slices of an array with <code>ndims(A)==3</code>.</p><pre><code class="language-none">BatchedTranspose{T, N, S} &lt;: AbstractBatchedMatrix{T, N}
BatchedAdjoint{T, N, S}</code></pre><p>Lazy wrappers analogous to <code>Transpose</code> and <code>Adjoint</code>, returned by <code>batched_transpose</code></p></div></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../advanced/">« Advanced Model Building</a><a class="docs-footer-nextpage" href="../../data/onehot/">One-Hot Encoding »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
BatchedAdjoint{T, N, S}</code></pre><p>Lazy wrappers analogous to <code>Transpose</code> and <code>Adjoint</code>, returned by <code>batched_transpose</code></p></div></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../advanced/">« Advanced Model Building</a><a class="docs-footer-nextpage" href="../../data/onehot/">One-Hot Encoding »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -39,4 +39,4 @@ m = Flux.Recur(rnn, h)
y = m(x)</code></pre><p>The <code>Recur</code> wrapper stores the state between runs in the <code>m.state</code> field.</p><p>If you use the <code>RNN(10, 5)</code> constructor as opposed to <code>RNNCell</code> you&#39;ll see that it&#39;s simply a wrapped cell.</p><pre><code class="language-julia">julia&gt; RNN(10, 5)
Recur(RNNCell(10, 5, tanh))</code></pre><h2 id="Sequences-1"><a class="docs-heading-anchor" href="#Sequences-1">Sequences</a><a class="docs-heading-anchor-permalink" href="#Sequences-1" title="Permalink"></a></h2><p>Often we want to work with sequences of inputs, rather than individual <code>x</code>s.</p><pre><code class="language-julia">seq = [rand(10) for i = 1:10]</code></pre><p>With <code>Recur</code>, applying our model to each element of a sequence is trivial:</p><pre><code class="language-julia">m.(seq) # returns a list of 5-element vectors</code></pre><p>This works even when we&#39;ve chain recurrent layers into a larger model.</p><pre><code class="language-julia">m = Chain(LSTM(10, 15), Dense(15, 5))
m.(seq)</code></pre><p>Finally, we can reset the hidden state of the cell back to its initial value using <code>reset!(m)</code>.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../basics/">« Basics</a><a class="docs-footer-nextpage" href="../regularisation/">Regularisation »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
m.(seq)</code></pre><p>Finally, we can reset the hidden state of the cell back to its initial value using <code>reset!(m)</code>.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../basics/">« Basics</a><a class="docs-footer-nextpage" href="../regularisation/">Regularisation »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -36,4 +36,4 @@ julia&gt; activations(c, rand(10))
Float32[0.5192045, 0.48079553]
julia&gt; sum(norm, ans)
2.1166067f0</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../recurrence/">« Recurrence</a><a class="docs-footer-nextpage" href="../layers/">Model Reference »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2.1166067f0</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../recurrence/">« Recurrence</a><a class="docs-footer-nextpage" href="../layers/">Model Reference »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -17,4 +17,4 @@ y_batch = reduce(hcat, ys)
function loss_total(x_batch::Matrix, y_batch::Matrix)
y_preds = model(x_batch)
sum(loss.(y_preds, y_batch))
end</code></pre><p>When doing this kind of concatenation use <code>reduce(hcat, xs)</code> rather than <code>hcat(xs...)</code>. This will avoid the splatting penalty, and will hit the optimised <code>reduce</code> method.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../ecosystem/">« The Julia Ecosystem</a><a class="docs-footer-nextpage" href="../community/">Community »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
end</code></pre><p>When doing this kind of concatenation use <code>reduce(hcat, xs)</code> rather than <code>hcat(xs...)</code>. This will avoid the splatting penalty, and will hit the optimised <code>reduce</code> method.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../ecosystem/">« The Julia Ecosystem</a><a class="docs-footer-nextpage" href="../community/">Community »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -47,4 +47,4 @@ evalcb = throttle(30) do
# Show loss
@save &quot;model-checkpoint.bson&quot; model
end</code></pre><p>This will update the <code>&quot;model-checkpoint.bson&quot;</code> file every thirty seconds.</p><p>You can get more advanced by saving a series of models throughout training, for example</p><pre><code class="language-julia">@save &quot;model-$(now()).bson&quot; model</code></pre><p>will produce a series of models like <code>&quot;model-2018-03-06T02:57:10.41.bson&quot;</code>. You could also store the current test set loss, so that it&#39;s easy to (for example) revert to an older copy of the model if it starts to overfit.</p><pre><code class="language-julia">@save &quot;model-$(now()).bson&quot; model loss = testloss()</code></pre><p>You can even store optimiser state alongside the model, to resume training exactly where you left off.</p><pre><code class="language-julia">opt = ADAM()
@save &quot;model-$(now()).bson&quot; model opt</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gpu/">« GPU Support</a><a class="docs-footer-nextpage" href="../ecosystem/">The Julia Ecosystem »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
@save &quot;model-$(now()).bson&quot; model opt</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gpu/">« GPU Support</a><a class="docs-footer-nextpage" href="../ecosystem/">The Julia Ecosystem »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

View File

@ -6,4 +6,4 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
ga('create', 'UA-36890222-9', 'auto');
ga('send', 'pageview', {'page': location.pathname + location.search + location.hash});
</script><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/flux.css" rel="stylesheet" type="text/css"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-dark.css" data-theme-name="documenter-dark"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><div class="docs-package-name"><span class="docs-autofit">Flux</span></div><form class="docs-search" action><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="../">Home</a></li><li><span class="tocitem">Building Models</span><ul><li><a class="tocitem" href="../models/basics/">Basics</a></li><li><a class="tocitem" href="../models/recurrence/">Recurrence</a></li><li><a class="tocitem" href="../models/regularisation/">Regularisation</a></li><li><a class="tocitem" href="../models/layers/">Model Reference</a></li><li><a class="tocitem" href="../models/advanced/">Advanced Model Building</a></li><li><a class="tocitem" href="../models/nnlib/">NNlib</a></li></ul></li><li><span class="tocitem">Handling Data</span><ul><li><a class="tocitem" href="../data/onehot/">One-Hot Encoding</a></li><li><a class="tocitem" href="../data/dataloader/">DataLoader</a></li></ul></li><li><span class="tocitem">Training Models</span><ul><li><a class="tocitem" href="../training/optimisers/">Optimisers</a></li><li><a class="tocitem" href="../training/training/">Training</a></li></ul></li><li><a class="tocitem" href="../gpu/">GPU Support</a></li><li><a class="tocitem" href="../saving/">Saving &amp; Loading</a></li><li><a class="tocitem" href="../ecosystem/">The Julia Ecosystem</a></li><li><a class="tocitem" href="../performance/">Performance Tips</a></li><li><a class="tocitem" href="../community/">Community</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li class="is-active"><a href>Search</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>Search</a></li></ul></nav><div class="docs-right"><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article><p id="documenter-search-info">Loading search...</p><ul id="documenter-search-results"></ul></article></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body><script src="../search_index.js"></script><script src="../assets/search.js"></script></html>
</script><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/flux.css" rel="stylesheet" type="text/css"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-dark.css" data-theme-name="documenter-dark"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><div class="docs-package-name"><span class="docs-autofit">Flux</span></div><form class="docs-search" action><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="../">Home</a></li><li><span class="tocitem">Building Models</span><ul><li><a class="tocitem" href="../models/basics/">Basics</a></li><li><a class="tocitem" href="../models/recurrence/">Recurrence</a></li><li><a class="tocitem" href="../models/regularisation/">Regularisation</a></li><li><a class="tocitem" href="../models/layers/">Model Reference</a></li><li><a class="tocitem" href="../models/advanced/">Advanced Model Building</a></li><li><a class="tocitem" href="../models/nnlib/">NNlib</a></li></ul></li><li><span class="tocitem">Handling Data</span><ul><li><a class="tocitem" href="../data/onehot/">One-Hot Encoding</a></li><li><a class="tocitem" href="../data/dataloader/">DataLoader</a></li></ul></li><li><span class="tocitem">Training Models</span><ul><li><a class="tocitem" href="../training/optimisers/">Optimisers</a></li><li><a class="tocitem" href="../training/training/">Training</a></li></ul></li><li><a class="tocitem" href="../gpu/">GPU Support</a></li><li><a class="tocitem" href="../saving/">Saving &amp; Loading</a></li><li><a class="tocitem" href="../ecosystem/">The Julia Ecosystem</a></li><li><a class="tocitem" href="../performance/">Performance Tips</a></li><li><a class="tocitem" href="../community/">Community</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li class="is-active"><a href>Search</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>Search</a></li></ul></nav><div class="docs-right"><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article><p id="documenter-search-info">Loading search...</p><ul id="documenter-search-results"></ul></article></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body><script src="../search_index.js"></script><script src="../assets/search.js"></script></html>

File diff suppressed because one or more lines are too long

View File

@ -28,7 +28,7 @@ end</code></pre><p>Running this will alter the parameters <code>W</code> and <co
for p in (W, b)
update!(opt, p, grads[p])
end</code></pre><p>An optimiser <code>update!</code> accepts a parameter and a gradient, and updates the parameter according to the chosen rule. We can also pass <code>opt</code> to our <a href="../training/">training loop</a>, which will update all parameters of the model in a loop. However, we can now easily replace <code>Descent</code> with a more advanced optimiser such as <code>ADAM</code>.</p><h2 id="Optimiser-Reference-1"><a class="docs-heading-anchor" href="#Optimiser-Reference-1">Optimiser Reference</a><a class="docs-heading-anchor-permalink" href="#Optimiser-Reference-1" title="Permalink"></a></h2><p>All optimisers return an object that, when passed to <code>train!</code>, will update the parameters passed to it.</p><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.update!" href="#Flux.Optimise.update!"><code>Flux.Optimise.update!</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">update!(opt, p, g)
update!(opt, ps::Params, gs)</code></pre><p>Perform an update step of the parameters <code>ps</code> (or the single parameter <code>p</code>) according to optimizer <code>opt</code> and the gradients <code>gs</code> (the gradient <code>g</code>).</p><p>As a result, the parameters are mutated and the optimizer&#39;s internal state may change. </p><p>update!(x, x̄)</p><p>Update the array <code>x</code> according to <code>x .-= x̄</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/train.jl#L5-L17">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Descent" href="#Flux.Optimise.Descent"><code>Flux.Optimise.Descent</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Descent(η)</code></pre><p>Classic gradient descent optimiser with learning rate <code>η</code>. For each parameter <code>p</code> and its gradient <code>δp</code>, this runs <code>p -= η*δp</code></p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): The amount by which the gradients are discounted before updating the weights. Defaults to <code>0.1</code>.</li></ul><p><strong>Example</strong></p><pre><code class="language-julia-repl">opt = Descent() # uses default η (0.1)
update!(opt, ps::Params, gs)</code></pre><p>Perform an update step of the parameters <code>ps</code> (or the single parameter <code>p</code>) according to optimizer <code>opt</code> and the gradients <code>gs</code> (the gradient <code>g</code>).</p><p>As a result, the parameters are mutated and the optimizer&#39;s internal state may change. </p><p>update!(x, x̄)</p><p>Update the array <code>x</code> according to <code>x .-= x̄</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/train.jl#L5-L17">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Descent" href="#Flux.Optimise.Descent"><code>Flux.Optimise.Descent</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Descent(η)</code></pre><p>Classic gradient descent optimiser with learning rate <code>η</code>. For each parameter <code>p</code> and its gradient <code>δp</code>, this runs <code>p -= η*δp</code></p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): The amount by which the gradients are discounted before updating the weights. Defaults to <code>0.1</code>.</li></ul><p><strong>Example</strong></p><pre><code class="language-julia-repl">opt = Descent() # uses default η (0.1)
opt = Descent(0.3) # use provided η
@ -38,23 +38,23 @@ gs = gradient(ps) do
loss(x, y)
end
Flux.Optimise.update!(opt, ps, gs)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L8-L31">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Momentum" href="#Flux.Optimise.Momentum"><code>Flux.Optimise.Momentum</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Momentum(η, ρ)</code></pre><p>Gradient descent with learning rate <code>η</code> and momentum <code>ρ</code>.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (<code>η</code>): Amount by which gradients are discounted before updating the weights. Defaults to <code>0.01</code>.</li><li>Momentum (<code>ρ</code>): Parameter that accelerates descent in the relevant direction and dampens oscillations. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = Momentum() # uses defaults of η = 0.01 and ρ = 0.9
Flux.Optimise.update!(opt, ps, gs)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L8-L31">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Momentum" href="#Flux.Optimise.Momentum"><code>Flux.Optimise.Momentum</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Momentum(η, ρ)</code></pre><p>Gradient descent with learning rate <code>η</code> and momentum <code>ρ</code>.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (<code>η</code>): Amount by which gradients are discounted before updating the weights. Defaults to <code>0.01</code>.</li><li>Momentum (<code>ρ</code>): Parameter that accelerates descent in the relevant direction and dampens oscillations. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = Momentum() # uses defaults of η = 0.01 and ρ = 0.9
opt = Momentum(0.01, 0.99)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L42-L57">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Nesterov" href="#Flux.Optimise.Nesterov"><code>Flux.Optimise.Nesterov</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Nesterov(η, ρ)</code></pre><p>Gradient descent with learning rate <code>η</code> and Nesterov momentum <code>ρ</code>.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Amount by which the gradients are dicsounted berfore updating the weights. Defaults to <code>0.001</code>.</li><li>Nesterov Momentum (ρ): Parameters controlling the amount of nesterov momentum to be applied. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = Nesterov() # uses defaults η = 0.001 and ρ = 0.9
opt = Momentum(0.01, 0.99)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L42-L57">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.Nesterov" href="#Flux.Optimise.Nesterov"><code>Flux.Optimise.Nesterov</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">Nesterov(η, ρ)</code></pre><p>Gradient descent with learning rate <code>η</code> and Nesterov momentum <code>ρ</code>.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Amount by which the gradients are dicsounted berfore updating the weights. Defaults to <code>0.001</code>.</li><li>Nesterov Momentum (ρ): Parameters controlling the amount of nesterov momentum to be applied. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = Nesterov() # uses defaults η = 0.001 and ρ = 0.9
opt = Nesterov(0.003, 0.95)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L73-L88">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.RMSProp" href="#Flux.Optimise.RMSProp"><code>Flux.Optimise.RMSProp</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">RMSProp(η, ρ)</code></pre><p>Implements the RMSProp algortihm. Often a good choice for recurrent networks. Parameters other than learning rate generally don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Rho (ρ): Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = RMSProp() # uses default η = 0.001 and ρ = 0.9
opt = Nesterov(0.003, 0.95)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L73-L88">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.RMSProp" href="#Flux.Optimise.RMSProp"><code>Flux.Optimise.RMSProp</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">RMSProp(η, ρ)</code></pre><p>Implements the RMSProp algortihm. Often a good choice for recurrent networks. Parameters other than learning rate generally don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Rho (ρ): Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = RMSProp() # uses default η = 0.001 and ρ = 0.9
opt = RMSProp(0.002, 0.95)</code></pre><p><strong>References</strong></p><p><a href="https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">RMSProp</a></p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L105-L123">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAM" href="#Flux.Optimise.ADAM"><code>Flux.Optimise.ADAM</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADAM(η, β::Tuple)</code></pre><p>Implements the ADAM optimiser.</p><p><strong>Paramters</strong></p><ul><li>Learning Rate (<code>η</code>): Defaults to <code>0.001</code>.</li><li>Beta (<code>β::Tuple</code>): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = RMSProp(0.002, 0.95)</code></pre><p><strong>References</strong></p><p><a href="https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">RMSProp</a></p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L105-L123">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAM" href="#Flux.Optimise.ADAM"><code>Flux.Optimise.ADAM</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADAM(η, β::Tuple)</code></pre><p>Implements the ADAM optimiser.</p><p><strong>Paramters</strong></p><ul><li>Learning Rate (<code>η</code>): Defaults to <code>0.001</code>.</li><li>Beta (<code>β::Tuple</code>): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = ADAM(0.001, (0.9, 0.8))</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1412.6980v8">ADAM</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L139-L157">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.AdaMax" href="#Flux.Optimise.AdaMax"><code>Flux.Optimise.AdaMax</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">AdaMax(η, β::Tuple)</code></pre><p>Variant of ADAM based on ∞-norm.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code></li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = AdaMax() # uses default η and β
opt = ADAM(0.001, (0.9, 0.8))</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1412.6980v8">ADAM</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L139-L157">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.AdaMax" href="#Flux.Optimise.AdaMax"><code>Flux.Optimise.AdaMax</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">AdaMax(η, β::Tuple)</code></pre><p>Variant of ADAM based on ∞-norm.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code></li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = AdaMax() # uses default η and β
opt = AdaMax(0.001, (0.9, 0.995))</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1412.6980v9">AdaMax</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L221-L238">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAGrad" href="#Flux.Optimise.ADAGrad"><code>Flux.Optimise.ADAGrad</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADAGrad(η)</code></pre><p>Implements AdaGrad. It has parameter specific learning rates based on how frequently it is updated.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.1</code></li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAGrad() # uses default η = 0.1
opt = AdaMax(0.001, (0.9, 0.995))</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1412.6980v9">AdaMax</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L221-L238">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAGrad" href="#Flux.Optimise.ADAGrad"><code>Flux.Optimise.ADAGrad</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADAGrad(η)</code></pre><p>Implements AdaGrad. It has parameter specific learning rates based on how frequently it is updated.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.1</code></li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAGrad() # uses default η = 0.1
opt = ADAGrad(0.001)</code></pre><p><strong>References</strong></p><p><a href="http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf">ADAGrad</a> optimiser. Parameters don&#39;t need tuning.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L257-L275">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADADelta" href="#Flux.Optimise.ADADelta"><code>Flux.Optimise.ADADelta</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADADelta(ρ)</code></pre><p>Version of ADAGrad that adapts learning rate based on a window of past gradient updates. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Rho (ρ): Factor by which gradient is decayed at each time step. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADADelta() # uses default ρ = 0.9
opt = ADADelta(0.89)</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1212.5701">ADADelta</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L290-L306">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.AMSGrad" href="#Flux.Optimise.AMSGrad"><code>Flux.Optimise.AMSGrad</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">AMSGrad(η, β::Tuple)</code></pre><p>Implements AMSGrad version of the ADAM optimiser. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = AMSGrad() # uses default η and β
opt = AMSGrad(0.001, (0.89, 0.995))</code></pre><p><strong>References</strong></p><p><a href="https://openreview.net/forum?id=ryQu7f-RZ">AMSGrad</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L323-L340">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.NADAM" href="#Flux.Optimise.NADAM"><code>Flux.Optimise.NADAM</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">NADAM(η, β::Tuple)</code></pre><p>Nesterov variant of ADAM. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = NADAM() # uses default η and β
opt = NADAM(0.002, (0.89, 0.995))</code></pre><p><strong>References</strong></p><p><a href="http://cs229.stanford.edu/proj2015/054_report.pdf">NADAM</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L358-L375">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAMW" href="#Flux.Optimise.ADAMW"><code>Flux.Optimise.ADAMW</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">ADAMW(η, β::Tuple, decay)</code></pre><p>Variant of ADAM defined by fixing weight decay regularization.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to (0.9, 0.999).</li><li>decay: Decay applied to weights during optimisation. Defaults to 0.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAMW() # uses default η, β and decay
opt = ADAMW(0.001, (0.89, 0.995), 0.1)</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1711.05101">ADAMW</a></p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L394-L412">source</a></section></article><h2 id="Optimiser-Interface-1"><a class="docs-heading-anchor" href="#Optimiser-Interface-1">Optimiser Interface</a><a class="docs-heading-anchor-permalink" href="#Optimiser-Interface-1" title="Permalink"></a></h2><p>Flux&#39;s optimisers are built around a <code>struct</code> that holds all the optimiser parameters along with a definition of how to apply the update rule associated with it. We do this via the <code>apply!</code> function which takes the optimiser as the first argument followed by the parameter and its corresponding gradient.</p><p>In this manner Flux also allows one to create custom optimisers to be used seamlessly. Let&#39;s work this with a simple example.</p><pre><code class="language-julia">mutable struct Momentum
opt = ADAGrad(0.001)</code></pre><p><strong>References</strong></p><p><a href="http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf">ADAGrad</a> optimiser. Parameters don&#39;t need tuning.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L257-L275">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADADelta" href="#Flux.Optimise.ADADelta"><code>Flux.Optimise.ADADelta</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ADADelta(ρ)</code></pre><p>Version of ADAGrad that adapts learning rate based on a window of past gradient updates. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Rho (ρ): Factor by which gradient is decayed at each time step. Defaults to <code>0.9</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADADelta() # uses default ρ = 0.9
opt = ADADelta(0.89)</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1212.5701">ADADelta</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L290-L306">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.AMSGrad" href="#Flux.Optimise.AMSGrad"><code>Flux.Optimise.AMSGrad</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">AMSGrad(η, β::Tuple)</code></pre><p>Implements AMSGrad version of the ADAM optimiser. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = AMSGrad() # uses default η and β
opt = AMSGrad(0.001, (0.89, 0.995))</code></pre><p><strong>References</strong></p><p><a href="https://openreview.net/forum?id=ryQu7f-RZ">AMSGrad</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L323-L340">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.NADAM" href="#Flux.Optimise.NADAM"><code>Flux.Optimise.NADAM</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">NADAM(η, β::Tuple)</code></pre><p>Nesterov variant of ADAM. Parameters don&#39;t need tuning.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to <code>(0.9, 0.999)</code>.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = NADAM() # uses default η and β
opt = NADAM(0.002, (0.89, 0.995))</code></pre><p><strong>References</strong></p><p><a href="http://cs229.stanford.edu/proj2015/054_report.pdf">NADAM</a> optimiser.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L358-L375">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ADAMW" href="#Flux.Optimise.ADAMW"><code>Flux.Optimise.ADAMW</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">ADAMW(η, β::Tuple, decay)</code></pre><p>Variant of ADAM defined by fixing weight decay regularization.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (η): Defaults to <code>0.001</code>.</li><li>Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to (0.9, 0.999).</li><li>decay: Decay applied to weights during optimisation. Defaults to 0.</li></ul><p><strong>Examples</strong></p><pre><code class="language-julia">opt = ADAMW() # uses default η, β and decay
opt = ADAMW(0.001, (0.89, 0.995), 0.1)</code></pre><p><strong>References</strong></p><p><a href="https://arxiv.org/abs/1711.05101">ADAMW</a></p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L394-L412">source</a></section></article><h2 id="Optimiser-Interface-1"><a class="docs-heading-anchor" href="#Optimiser-Interface-1">Optimiser Interface</a><a class="docs-heading-anchor-permalink" href="#Optimiser-Interface-1" title="Permalink"></a></h2><p>Flux&#39;s optimisers are built around a <code>struct</code> that holds all the optimiser parameters along with a definition of how to apply the update rule associated with it. We do this via the <code>apply!</code> function which takes the optimiser as the first argument followed by the parameter and its corresponding gradient.</p><p>In this manner Flux also allows one to create custom optimisers to be used seamlessly. Let&#39;s work this with a simple example.</p><pre><code class="language-julia">mutable struct Momentum
eta
rho
velocity
@ -81,4 +81,4 @@ for t = 1:10^5
end
loss(rand(10)) # around 0.9</code></pre><p>In this manner it is possible to compose optimisers for some added flexibility.</p><h2 id="Decays-1"><a class="docs-heading-anchor" href="#Decays-1">Decays</a><a class="docs-heading-anchor-permalink" href="#Decays-1" title="Permalink"></a></h2><p>Similar to optimisers, Flux also defines some simple decays that can be used in conjunction with other optimisers, or standalone.</p><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.ExpDecay" href="#Flux.Optimise.ExpDecay"><code>Flux.Optimise.ExpDecay</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">ExpDecay(eta, decay, decay_step, clip)</code></pre><p>Discount the learning rate <code>eta</code> by a multiplicative factor <code>decay</code> every <code>decay_step</code> till a minimum of <code>clip</code>.</p><p><strong>Parameters</strong></p><ul><li>Learning Rate (eta): Defaults to <code>0.001</code>.</li><li>decay: Factor by which the learning rate is discounted. Defaults to <code>0.1</code>.</li><li>decay_step: Schedules decay operations by setting number of steps between two decay operations. Defaults to <code>1000</code>.</li><li>clip: Minimum value of learning rate. Defaults to <code>1e-4</code>.</li></ul><p><strong>Example</strong></p><p>To apply exponential decay to an optimiser:</p><pre><code class="language-julia">Optimiser(ExpDecay(..), Opt(..))
opt = Optimiser(ExpDecay(), ADAM())</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L471-L488">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.InvDecay" href="#Flux.Optimise.InvDecay"><code>Flux.Optimise.InvDecay</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">InvDecay(γ)</code></pre><p>Applies inverse time decay to an optimiser, i.e., the effective step size at iteration <code>n</code> is <code>eta / (1 + γ * n)</code> where <code>eta</code> is the initial step size. The wrapped optimiser&#39;s step size is not modified.</p><p><strong>Parameters</strong></p><ul><li>gamma (γ): Defaults to <code>0.001</code></li></ul><p><strong>Example</strong></p><pre><code class="language-julia">Optimiser(InvDecay(..), Opt(..))</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L443-L455">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.WeightDecay" href="#Flux.Optimise.WeightDecay"><code>Flux.Optimise.WeightDecay</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">WeightDecay(wd)</code></pre><p>Decays the weight by <code>wd</code></p><p><strong>Parameters</strong></p><ul><li>weight decay (wd): 0</li></ul></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/1605a010398ea2dae423ca8e346d19e213594de5/src/optimise/optimisers.jl#L509-L516">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../data/dataloader/">« DataLoader</a><a class="docs-footer-nextpage" href="../training/">Training »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Saturday 14 March 2020 10:25">Saturday 14 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
opt = Optimiser(ExpDecay(), ADAM())</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L471-L488">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.InvDecay" href="#Flux.Optimise.InvDecay"><code>Flux.Optimise.InvDecay</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">InvDecay(γ)</code></pre><p>Applies inverse time decay to an optimiser, i.e., the effective step size at iteration <code>n</code> is <code>eta / (1 + γ * n)</code> where <code>eta</code> is the initial step size. The wrapped optimiser&#39;s step size is not modified.</p><p><strong>Parameters</strong></p><ul><li>gamma (γ): Defaults to <code>0.001</code></li></ul><p><strong>Example</strong></p><pre><code class="language-julia">Optimiser(InvDecay(..), Opt(..))</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L443-L455">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="Flux.Optimise.WeightDecay" href="#Flux.Optimise.WeightDecay"><code>Flux.Optimise.WeightDecay</code></a><span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">WeightDecay(wd)</code></pre><p>Decays the weight by <code>wd</code></p><p><strong>Parameters</strong></p><ul><li>weight decay (wd): 0</li></ul></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/240ab1147f5f49da24f5335de64a2725088dca7d/src/optimise/optimisers.jl#L509-L516">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../data/dataloader/">« DataLoader</a><a class="docs-footer-nextpage" href="../training/">Training »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Sunday 22 March 2020 06:56">Sunday 22 March 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

File diff suppressed because one or more lines are too long