Minor fixes:

This commit is contained in:
Avik Pal 2018-09-11 16:21:55 +05:30
parent 7e83852862
commit c4f87ff15c

View File

@ -1,6 +1,6 @@
"""
testmode!(m, val=true)
testmode!(m)
testmode!(m, false)
Put layers like [`Dropout`](@ref) and [`BatchNorm`](@ref) into testing mode
(or back to training mode with `false`).
"""
@ -13,11 +13,9 @@ _testmode!(m, test) = nothing
"""
Dropout(p)
A Dropout layer. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
reduces overfitting during training.
Does nothing to the input once in [`testmode!`](@ref).
"""
mutable struct Dropout{F}
@ -43,9 +41,7 @@ end
_testmode!(a::Dropout, test) = (a.active = !test)
"""
LayerNorm(h::Integer)
A [normalisation layer](https://arxiv.org/pdf/1607.06450.pdf) designed to be
used with recurrent hidden states of size `h`. Normalises the mean/stddev of
each input before applying a per-neuron gain/bias.
@ -69,23 +65,17 @@ end
BatchNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Batch Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`BatchNorm` computes the mean and variance for each each `W×H×1×N` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
See [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf).
Example:
```julia
m = Chain(
Dense(28^2, 64),
@ -93,32 +83,23 @@ m = Chain(
Dense(64, 10),
BatchNorm(10),
softmax)
y = m(rand(28^2, 10))
```
To use the layer at test time set [`testmode!(m, true)`](@ref).
"""
mutable struct BatchNorm
λ # activation function
β # bias
γ # scale
μ # moving mean
σ² # moving var
ϵ
momentum
mutable struct BatchNorm{F,V,W,N}
λ::F # activation function
β::V # bias
γ::V # scale
μ::W # moving mean
σ²::W # moving std
ϵ::N
momentum::N
active::Bool
end
# NOTE: Keeping the ϵ smaller than 1e-5 is not supported by CUDNN
function BatchNorm(chs::Integer, λ = identity;
initβ = (i) -> zeros(i),
initγ = (i) -> ones(i),
ϵ = 1f-5,
momentum = 0.1)
BatchNorm(chs::Integer, λ = identity;
initβ = (i) -> zeros(i), initγ = (i) -> ones(i), ϵ = 1e-5, momentum = .1) =
BatchNorm(λ, param(initβ(chs)), param(initγ(chs)),
zeros(Float32, chs), ones(Float32, chs), ϵ, momentum, true)
end
zeros(chs), ones(chs), ϵ, momentum, true)
function (BN::BatchNorm)(x)
size(x, ndims(x)-1) == length(BN.β) ||
@ -132,7 +113,7 @@ function (BN::BatchNorm)(x)
if !BN.active
μ = reshape(BN.μ, affine_shape...)
σ = reshape(BN.σ, affine_shape...)
σ² = reshape(BN.σ², affine_shape...)
else
T = eltype(x)
@ -143,8 +124,8 @@ function (BN::BatchNorm)(x)
# update moving mean/std
mtm = data(convert(T, BN.momentum))
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* dropdims(data(μ), dims = (axes...,))
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* dropdims(data(σ²), dims = (axes...)) .* m ./ (m - 1))
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* dropdims(data(μ), dims = axes)
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* dropdims(data(σ²), dims = axes) .* m ./ (m - 1))
end
let λ = BN.λ
@ -152,7 +133,11 @@ function (BN::BatchNorm)(x)
end
end
@treelike BatchNorm
children(BN::BatchNorm) =
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.ϵ, BN.momentum, BN.active)
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
BatchNorm(BN.λ, f(BN.β), f(BN.γ), f(BN.μ), f(BN.σ), BN.ϵ, BN.momentum, BN.active)
_testmode!(BN::BatchNorm, test) = (BN.active = !test)