diff --git a/src/layers/normalise.jl b/src/layers/normalise.jl index 85224ed2..c25fe798 100644 --- a/src/layers/normalise.jl +++ b/src/layers/normalise.jl @@ -134,21 +134,21 @@ function (BN::BatchNorm)(x) μ = reshape(BN.μ, affine_shape...) σ = reshape(BN.σ, affine_shape...) else - T = eltype(x) + T = eltype(data(x)) - ϵ = data(convert(T, BN.ϵ)) axes = [1:dims-2; dims] # axes to reduce along (all but channels axis) μ = mean(x, dims = axes) - σ = sqrt.(mean((x .- μ).^2, dims = axes) .+ ϵ) + meansub = (x .- μ) + σ = mean(meansub .* meansub, dims = axes) # update moving mean/std - mtm = data(convert(T, BN.momentum)) - BN.μ = (1 - mtm) .* BN.μ .+ mtm .* dropdims(data(μ), dims = (axes...,)) - BN.σ = (1 - mtm) .* BN.σ .+ mtm .* dropdims(data(σ), dims = (axes...,)) .* m ./ (m - 1) + mtm = convert(T, data(BN.momentum)) + BN.μ = (1 - mtm) .* BN.μ .+ mtm .* data(reshape(μ, :)) + BN.σ = ((1 - mtm) .* BN.σ .+ mtm .* data(reshape(σ, :)) .* m ./ (m - 1)) end - let λ = BN.λ - λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ σ) .+ reshape(β, affine_shape...)) + let λ = BN.λ, ϵ = eltype(data(σ²))(BN.ϵ) + λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ sqrt.(σ .+ ϵ)) .+ reshape(β, affine_shape...)) end end