diff --git a/latest/models/layers.html b/latest/models/layers.html index 934fe185..79da5315 100644 --- a/latest/models/layers.html +++ b/latest/models/layers.html @@ -11,15 +11,10 @@ m(5) == 26 m = Chain(Dense(10, 5), Dense(5, 2)) x = rand(10) -m(x) == m[2](m[1](x))
Chain
also supports indexing and slicing, e.g. m[2]
or m[1:end-1]
. m[1:3](x)
will calculate the output of the first three layers.
Flux.Dense
— Type.Dense(in::Integer, out::Integer, σ = identity)
Creates a traditional Dense
layer with parameters W
and b
.
y = σ.(W * x .+ b)
The input x
must be a vector of length in
, or a batch of vectors represented as an in × N
matrix. The out y
will be a vector or batch of length out
.
julia> d = Dense(5, 2)
+m(x) == m[2](m[1](x))
Chain
also supports indexing and slicing, e.g. m[2]
or m[1:end-1]
. m[1:3](x)
will calculate the output of the first three layers.
Flux.Dense
— Type.Dense(in::Integer, out::Integer, σ = identity)
Creates a traditional Dense
layer with parameters W
and b
.
y = σ.(W * x .+ b)
The input x
must be a vector of length in
, or a batch of vectors represented as an in × N
matrix. The out y
will be a vector or batch of length out
.
julia> d = Dense(5, 2)
Dense(5, 2)
julia> d(rand(5))
Tracked 2-element Array{Float64,1}:
0.00257447
- -0.00449443
Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.
Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs)
, relu.(xs)
and so on.
σ
-relu
-leakyrelu
-elu
-swish
-softmax