Adds support for Depthwise Convolutions
This commit is contained in:
parent
159ca536ec
commit
cd6a0856d5
@ -1,4 +1,4 @@
|
|||||||
using NNlib: conv
|
using NNlib: conv, depthwiseconv
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Conv(size, in=>out)
|
Conv(size, in=>out)
|
||||||
@ -46,5 +46,49 @@ function Base.show(io::IO, l::Conv)
|
|||||||
print(io, ")")
|
print(io, ")")
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
DepthwiseConv(size, in=>mul)
|
||||||
|
DepthwiseConv(size, in=>mul, relu)
|
||||||
|
|
||||||
|
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||||
|
`in` and `mul` specify the number of input channels and channel multiplier respectively.
|
||||||
|
|
||||||
|
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||||
|
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||||
|
|
||||||
|
Takes the keyword arguments `pad` and `stride`.
|
||||||
|
"""
|
||||||
|
struct DepthwiseConv{N,F,A,V}
|
||||||
|
σ::F
|
||||||
|
weight::A
|
||||||
|
bias::V
|
||||||
|
stride::NTuple{N,Int}
|
||||||
|
pad::NTuple{N,Int}
|
||||||
|
end
|
||||||
|
|
||||||
|
DepthwiseConv(w::AbstractArray{T}, b::AbstractVector{T}, σ = identity;
|
||||||
|
stride = 1, pad = 0) where T =
|
||||||
|
DepthwiseConv(σ, w, b, stride, pad)
|
||||||
|
|
||||||
|
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
|
||||||
|
stride::NTuple{N,Integer} = map(_->1,k),
|
||||||
|
pad::NTuple{N,Integer} = map(_->0,k)) where N =
|
||||||
|
DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ,
|
||||||
|
stride = stride, pad = pad)
|
||||||
|
|
||||||
|
Flux.treelike(DepthwiseConv)
|
||||||
|
|
||||||
|
function (c::DepthwiseConv)(x)
|
||||||
|
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||||
|
σ.(depthwiseconv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(io::IO, l::Conv)
|
||||||
|
print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2])
|
||||||
|
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||||||
|
l.σ == identity || print(io, ", ", l.σ)
|
||||||
|
print(io, ")")
|
||||||
|
end
|
||||||
|
|
||||||
# v0.5
|
# v0.5
|
||||||
@deprecate Conv2D(args...; kw...) Conv(args...; kw...)
|
@deprecate Conv2D(args...; kw...) Conv(args...; kw...)
|
||||||
|
@ -234,7 +234,7 @@ end
|
|||||||
# NNlib
|
# NNlib
|
||||||
|
|
||||||
using NNlib
|
using NNlib
|
||||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool
|
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, depthwiseconv, maxpool, meanpool
|
||||||
|
|
||||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||||
|
|
||||||
@ -259,6 +259,20 @@ function back(::typeof(_conv), Δ, x, w, stride, pad)
|
|||||||
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad))
|
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad))
|
||||||
end
|
end
|
||||||
|
|
||||||
|
_depthwiseconv(x, w, stride, pad) = depthwiseconv(x, w, stride = stride, pad = pad)
|
||||||
|
|
||||||
|
depthwiseconv(x::TrackedArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||||
|
track(_depthwiseconv, x, w, stride, pad)
|
||||||
|
depthwiseconv(x::AbstractArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||||
|
track(_depthwiseconv, x, w, stride, pad)
|
||||||
|
depthwiseconv(x::TrackedArray{<:Real,N}, w::AbstractArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||||
|
track(_depthwiseconv, x, w, stride, pad)
|
||||||
|
|
||||||
|
function back(::typeof(_depthwiseconv), Δ, x, w, stride, pad)
|
||||||
|
@back(x, NNlib.∇depthwiseconv_data(Δ, data(x), data(w), stride = stride, pad = pad))
|
||||||
|
@back(x, NNlib.∇depthwiseconv_filter(Δ, data(x), data(w), stride = stride, pad = pad))
|
||||||
|
end
|
||||||
|
|
||||||
_maxpool(x, k, pad, stride) = maxpool(x, k; pad = pad, stride = stride)
|
_maxpool(x, k, pad, stride) = maxpool(x, k; pad = pad, stride = stride)
|
||||||
|
|
||||||
maxpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
|
maxpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
|
||||||
|
Loading…
Reference in New Issue
Block a user