reorganise

This commit is contained in:
Mike J Innes 2017-10-26 11:46:12 +01:00
parent 711ea09d99
commit cf6b930f63
6 changed files with 62 additions and 50 deletions

View File

@ -30,3 +30,11 @@ leakyrelu
elu
swish
```
## Normalisation & Regularisation
These layers don't affect the structure of the network but may improve training times or reduce overfitting.
```@docs
Dropout
```

View File

@ -9,7 +9,7 @@ using Lazy: @forward
export Chain, Dense, RNN, LSTM, Dropout,
SGD, ADAM, Momentum, Nesterov,
param, params, mapleaves, testmode!
param, params, mapleaves
using NNlib
export σ, relu, leakyrelu, elu, swish, softmax
@ -27,5 +27,6 @@ include("tree.jl")
include("layers/stateless.jl")
include("layers/basic.jl")
include("layers/recurrent.jl")
include("layers/normalisation.jl")
end # module

View File

@ -78,47 +78,3 @@ function Base.show(io::IO, l::Dense)
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
"""
Dropout(p; testmode=false)
A Dropout layer. If `testmode=false` mode sets input components `x[i]` to zero with
probability `p` and to `x[i]/(1-p)` with probability `(1-p)`.
In `testmode=true`it doesn't alter the input: `x == Dropout(p; mode=:eval)(x)`.
Change the mode with [`testmode!`](@ref).
"""
mutable struct Dropout{F}
p::F
testmode::Bool
end
Dropout(p::F; testmode::Bool=false) where {F} = Dropout{F}(p, testmode)
function (a::Dropout)(x)
if a.testmode
return x
else
if 0 < a.p < 1
y = similar(x)
rand!(y)
q = 1 - a.p
@inbounds for i=1:length(y)
y[i] = y[i] > a.p ? 1 / q : 0
end
return y .* x
elseif a.p == 0
return x
elseif a.p == 1
return zeros(x)
end
end
end
"""
testmode!(m, val=true)
Set model `m` in test mode if `val=true`, and in training mode otherwise.
This has an affect only if `m` contains [`Dropout`](@ref) or `BatchNorm` layers.
"""
testmode!(m, val::Bool=true) = prefor(x -> :testmode fieldnames(x) && (x.testmode = val), m)

View File

@ -0,0 +1,45 @@
"""
testmode!(m)
testmode!(m, false)
Put layers like [`Dropout`](@ref) and `BatchNorm` into testing mode (or back to
training mode with `false`).
"""
function testmode!(m, val::Bool=true)
prefor(x -> _testmode!(x, val), m)
return m
end
_testmode!(m, test) = nothing
"""
Dropout(p)
A Dropout layer. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
reduces overfitting during training.
Does nothing to the input once in [`testmode!`](@ref).
"""
mutable struct Dropout{F}
p::F
active::Bool
end
function Dropout(p)
@assert 0 p 1
Dropout{typeof(p)}(p, true)
end
function (a::Dropout)(x)
a.active || return x
y = similar(x)
rand!(y)
q = 1 - a.p
@inbounds for i=1:length(y)
y[i] = y[i] > a.p ? 1 / q : 0
end
return y .* x
end
_testmode!(a::Dropout, test) = (a.active = !test)

View File

@ -1,8 +1,10 @@
@testset "dropout" begin
using Flux: testmode!
@testset "Dropout" begin
x = [1.,2.,3.]
@test x === Dropout(0.1, testmode=true)(x)
@test x === Dropout(0, testmode=false)(x)
@test all(zeros(x) .== Dropout(1, testmode=false)(x))
@test x == testmode!(Dropout(0.1))(x)
@test x == Dropout(0)(x)
@test zeros(x) == Dropout(1)(x)
x = rand(100)
m = Dropout(0.9)

View File

@ -4,6 +4,6 @@ using Flux, Base.Test
include("utils.jl")
include("tracker.jl")
include("layers.jl")
include("layers/normalisation.jl")
end