example link
This commit is contained in:
parent
8e63ac766e
commit
d3419c943b
|
@ -2,12 +2,12 @@
|
|||
|
||||
Support for array operations on other hardware backends, like GPUs, is provided by external packages like [CuArrays](https://github.com/JuliaGPU/CuArrays.jl) and [CLArrays](https://github.com/JuliaGPU/CLArrays.jl). Flux doesn't care what array type you use, so we can just plug these in without any other changes.
|
||||
|
||||
For example, we can use `CuArrays` (with the `cu` array converter) to run our [basic example](models/basics.md) on an NVIDIA GPU.
|
||||
For example, we can use `CuArrays` (with the `cu` converter) to run our [basic example](models/basics.md) on an NVIDIA GPU.
|
||||
|
||||
```julia
|
||||
using CuArrays
|
||||
|
||||
W = cu(rand(2, 5))
|
||||
W = cu(rand(2, 5)) # a 2×5 CuArray
|
||||
b = cu(rand(2))
|
||||
|
||||
predict(x) = W*x .+ b
|
||||
|
@ -31,3 +31,5 @@ m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
|
|||
m = mapparams(cu, m)
|
||||
d(cu(rand(10)))
|
||||
```
|
||||
|
||||
The [mnist example](https://github.com/FluxML/model-zoo/blob/master/mnist/mnist.jl) contains the code needed to run the model on the GPU; just uncomment the lines after `using CuArrays`.
|
||||
|
|
Loading…
Reference in New Issue