From d3ba4dade035c4a5dfa4e39606b2728393683a97 Mon Sep 17 00:00:00 2001 From: autodocs Date: Sun, 15 Oct 2017 22:48:01 +0000 Subject: [PATCH] build based on 9a155ab --- latest/assets/documenter.css | 50 +++++++-- latest/assets/search.js | 178 +++++++++++++++++++++++++++++--- latest/contributing.html | 2 +- latest/data/onehot.html | 2 +- latest/gpu.html | 2 +- latest/index.html | 2 +- latest/models/basics.html | 2 +- latest/models/layers.html | 4 +- latest/models/recurrence.html | 2 +- latest/search.html | 2 +- latest/training/optimisers.html | 2 +- latest/training/training.html | 2 +- 12 files changed, 219 insertions(+), 31 deletions(-) diff --git a/latest/assets/documenter.css b/latest/assets/documenter.css index b8514efd..0aa36a9a 100644 --- a/latest/assets/documenter.css +++ b/latest/assets/documenter.css @@ -20,7 +20,7 @@ body, input { text-rendering: optimizeLegibility; } -pre, code { +pre, code, kbd { font-family: 'Roboto Mono', Monaco, courier, monospace; font-size: 0.90em; } @@ -46,15 +46,37 @@ body { line-height: 1.5; } -h1 { font-size: 1.75em; } -h2 { font-size: 1.50em; } -h3 { font-size: 1.25em; } +h1 { + font-size: 1.75em; +} + +/* Unless the

the is very first thing on the page (i.e. the second element + * in the
, * after the
, we add some additional styling to it + * to make it stand out a bit more. This way we get a reasonable fallback if CSS3 + * selectors are not supported in the browser. + */ +article > h1:not(:nth-child(2)) { + margin: 2.5em 0 0; + padding-bottom: 0.30em; + border-bottom: 1px solid #e5e5e5; +} +h2 { + font-size: 1.50em; + margin: 2.3em 0 0; + padding-bottom: 0.25em; + border-bottom: 1px solid #e5e5e5; +} +h3 { + font-size: 1.25em; + margin: 2.0em 0 0; +} h4 { font-size: 1.15em; } h5 { font-size: 1.10em; } h6 { font-size: 1em; } h4, h5, h6 { - margin: 1em 0; + margin-top: 1.5em; + margin-bottom: 1em; } img { @@ -105,6 +127,20 @@ pre code { background-color: initial; } +kbd { + font-size: 0.70em; + display: inline-block; + padding: 0.1em 0.5em 0.4em 0.5em; + line-height: 1.0em; + color: #444d56; + vertical-align: middle; + background-color: #fafbfc; + border: solid 1px #c6cbd1; + border-bottom-color: #959da5; + border-radius: 3px; + box-shadow: inset 0 -1px 0 #959da5; +} + /* Headers in admonitions and docstrings */ .admonition h1, article section.docstring h1 { @@ -341,8 +377,8 @@ article section.docstring .docstring-category { } article section.docstring a.source-link { - float: left; - font-weight: bold; + display: block; + font-weight: bold; } .nav-anchor, diff --git a/latest/assets/search.js b/latest/assets/search.js index 4e3e9a4a..5eb7fee8 100644 --- a/latest/assets/search.js +++ b/latest/assets/search.js @@ -38,29 +38,180 @@ parseUri.options = { requirejs.config({ paths: { - 'jquery': 'https://code.jquery.com/jquery-3.1.0.js?', - 'lunr': 'https://cdnjs.cloudflare.com/ajax/libs/lunr.js/0.7.1/lunr.min', + 'jquery': 'https://cdnjs.cloudflare.com/ajax/libs/jquery/3.1.1/jquery.min', + 'lunr': 'https://cdnjs.cloudflare.com/ajax/libs/lunr.js/2.1.3/lunr.min', + 'lodash': 'https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.4/lodash.min', } }); var currentScript = document.currentScript; -require(["jquery", "lunr"], function($, lunr) { +require(["jquery", "lunr", "lodash"], function($, lunr, _) { + $("#search-form").submit(function(e) { + e.preventDefault() + }) + + // list below is the lunr 2.1.3 list minus the intersect with names(Base) + // (all, any, get, in, is, which) and (do, else, for, let, where, while, with) + // ideally we'd just filter the original list but it's not available as a variable + lunr.stopWordFilter = lunr.generateStopWordFilter([ + 'a', + 'able', + 'about', + 'across', + 'after', + 'almost', + 'also', + 'am', + 'among', + 'an', + 'and', + 'are', + 'as', + 'at', + 'be', + 'because', + 'been', + 'but', + 'by', + 'can', + 'cannot', + 'could', + 'dear', + 'did', + 'does', + 'either', + 'ever', + 'every', + 'from', + 'got', + 'had', + 'has', + 'have', + 'he', + 'her', + 'hers', + 'him', + 'his', + 'how', + 'however', + 'i', + 'if', + 'into', + 'it', + 'its', + 'just', + 'least', + 'like', + 'likely', + 'may', + 'me', + 'might', + 'most', + 'must', + 'my', + 'neither', + 'no', + 'nor', + 'not', + 'of', + 'off', + 'often', + 'on', + 'only', + 'or', + 'other', + 'our', + 'own', + 'rather', + 'said', + 'say', + 'says', + 'she', + 'should', + 'since', + 'so', + 'some', + 'than', + 'that', + 'the', + 'their', + 'them', + 'then', + 'there', + 'these', + 'they', + 'this', + 'tis', + 'to', + 'too', + 'twas', + 'us', + 'wants', + 'was', + 'we', + 'were', + 'what', + 'when', + 'who', + 'whom', + 'why', + 'will', + 'would', + 'yet', + 'you', + 'your' + ]) + + // add . as a separator, because otherwise "title": "Documenter.Anchors.add!" + // would not find anything if searching for "add!", only for the entire qualification + lunr.tokenizer.separator = /[\s\-\.]+/ + + // custom trimmer that doesn't strip @ and !, which are used in julia macro and function names + lunr.trimmer = function (token) { + return token.update(function (s) { + return s.replace(/^[^a-zA-Z0-9@!]+/, '').replace(/[^a-zA-Z0-9@!]+$/, '') + }) + } + + lunr.Pipeline.registerFunction(lunr.stopWordFilter, 'juliaStopWordFilter') + lunr.Pipeline.registerFunction(lunr.trimmer, 'juliaTrimmer') + var index = lunr(function () { this.ref('location') - this.field('title', {boost: 10}) + this.field('title') this.field('text') + documenterSearchIndex['docs'].forEach(function(e) { + this.add(e) + }, this) }) var store = {} documenterSearchIndex['docs'].forEach(function(e) { - index.add(e) - store[e.location] = e + store[e.location] = {title: e.title, category: e.category} }) $(function(){ - function update_search(query) { - results = index.search(query) + function update_search(querystring) { + tokens = lunr.tokenizer(querystring) + results = index.query(function (q) { + tokens.forEach(function (t) { + q.term(t.toString(), { + fields: ["title"], + boost: 10, + usePipeline: false, + editDistance: 2, + wildcard: lunr.Query.wildcard.NONE + }) + q.term(t.toString(), { + fields: ["text"], + boost: 1, + usePipeline: true, + editDistance: 2, + wildcard: lunr.Query.wildcard.NONE + }) + }) + }) $('#search-info').text("Number of results: " + results.length) $('#search-results').empty() results.forEach(function(result) { @@ -75,15 +226,16 @@ require(["jquery", "lunr"], function($, lunr) { } function update_search_box() { - query = $('#search-query').val() - update_search(query) + querystring = $('#search-query').val() + update_search(querystring) } - $('#search-query').keyup(update_search_box) + $('#search-query').keyup(_.debounce(update_search_box, 250)) $('#search-query').change(update_search_box) - search_query = parseUri(window.location).queryKey["q"] - if(search_query !== undefined) { + search_query_uri = parseUri(window.location).queryKey["q"] + if(search_query_uri !== undefined) { + search_query = decodeURIComponent(search_query_uri.replace(/\+/g, '%20')) $("#search-query").val(search_query) } update_search_box(); diff --git a/latest/contributing.html b/latest/contributing.html index 71bbb94f..32ca2dde 100644 --- a/latest/contributing.html +++ b/latest/contributing.html @@ -6,4 +6,4 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Contributing & Help

Contributing & Help

If you need help, please ask on the Julia forum, the slack (channel #machine-learning), or Flux's Gitter.

Right now, the best way to help out is to try out the examples and report any issues or missing features as you find them. The second best way is to help us spread the word, perhaps by starring the repo.

If you're interested in hacking on Flux, most of the code is pretty straightforward. Adding new layer definitions or cost functions is simple using the Flux DSL itself, and things like data utilities and training processes are all plain Julia code.

If you get stuck or need anything, let us know!

+

Contributing & Help

Contributing & Help

If you need help, please ask on the Julia forum, the slack (channel #machine-learning), or Flux's Gitter.

Right now, the best way to help out is to try out the examples and report any issues or missing features as you find them. The second best way is to help us spread the word, perhaps by starring the repo.

If you're interested in hacking on Flux, most of the code is pretty straightforward. Adding new layer definitions or cost functions is simple using the Flux DSL itself, and things like data utilities and training processes are all plain Julia code.

If you get stuck or need anything, let us know!

diff --git a/latest/data/onehot.html b/latest/data/onehot.html index fe3023e9..394dbbad 100644 --- a/latest/data/onehot.html +++ b/latest/data/onehot.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

One-Hot Encoding

One-Hot Encoding

It's common to encode categorical variables (like true, false or cat, dog) in "one-of-k" or "one-hot" form. Flux provides the onehot function to make this easy.

julia> using Flux: onehot
+

One-Hot Encoding

One-Hot Encoding

It's common to encode categorical variables (like true, false or cat, dog) in "one-of-k" or "one-hot" form. Flux provides the onehot function to make this easy.

julia> using Flux: onehot
 
 julia> onehot(:b, [:a, :b, :c])
 3-element Flux.OneHotVector:
diff --git a/latest/gpu.html b/latest/gpu.html
index b6c47b12..1c71d7d4 100644
--- a/latest/gpu.html
+++ b/latest/gpu.html
@@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

GPU Support

GPU Support

Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn't care what array type you use, so we can just plug these in without any other changes.

For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.

using CuArrays
+

GPU Support

GPU Support

Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn't care what array type you use, so we can just plug these in without any other changes.

For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.

using CuArrays
 
 W = cu(rand(2, 5)) # a 2×5 CuArray
 b = cu(rand(2))
diff --git a/latest/index.html b/latest/index.html
index decac085..e6699979 100644
--- a/latest/index.html
+++ b/latest/index.html
@@ -6,5 +6,5 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

Home

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. The whole stack is implemented in clean Julia code (right down to the GPU kernels) and any part can be tweaked to your liking.

Installation

Install Julia 0.6.0 or later, if you haven't already.

Pkg.add("Flux")
+

Home

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. The whole stack is implemented in clean Julia code (right down to the GPU kernels) and any part can be tweaked to your liking.

Installation

Install Julia 0.6.0 or later, if you haven't already.

Pkg.add("Flux")
 Pkg.test("Flux") # Check things installed correctly

Start with the basics. The model zoo is also a good starting point for many common kinds of models.

diff --git a/latest/models/basics.html b/latest/models/basics.html index 34b0d47b..9bc6d552 100644 --- a/latest/models/basics.html +++ b/latest/models/basics.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Basics

Model-Building Basics

Taking Gradients

Consider a simple linear regression, which tries to predict an output array y from an input x. (It's a good idea to follow this example in the Julia repl.)

W = rand(2, 5)
+

Basics

Model-Building Basics

Taking Gradients

Consider a simple linear regression, which tries to predict an output array y from an input x. (It's a good idea to follow this example in the Julia repl.)

W = rand(2, 5)
 b = rand(2)
 
 predict(x) = W*x .+ b
diff --git a/latest/models/layers.html b/latest/models/layers.html
index 6cd0b063..c6cd47df 100644
--- a/latest/models/layers.html
+++ b/latest/models/layers.html
@@ -6,9 +6,9 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

Layer Reference

Model Layers

Flux.ChainType.
Chain(layers...)

Chain multiple layers / functions together, so that they are called in sequence on a given input.

m = Chain(x -> x^2, x -> x+1)
+

Layer Reference

Model Layers

Flux.ChainType.
Chain(layers...)

Chain multiple layers / functions together, so that they are called in sequence on a given input.

m = Chain(x -> x^2, x -> x+1)
 m(5) == 26
 
 m = Chain(Dense(10, 5), Dense(5, 2))
 x = rand(10)
-m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length in.

source
+m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length in.

source
diff --git a/latest/models/recurrence.html b/latest/models/recurrence.html index 9eea2b47..048f3cbe 100644 --- a/latest/models/recurrence.html +++ b/latest/models/recurrence.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Recurrence

Recurrent Models

Recurrent Cells

In the simple feedforward case, our model m is a simple function from various inputs xᵢ to predictions yᵢ. (For example, each x might be an MNIST digit and each y a digit label.) Each prediction is completely independent of any others, and using the same x will always produce the same y.

y₁ = f(x₁)
+

Recurrence

Recurrent Models

Recurrent Cells

In the simple feedforward case, our model m is a simple function from various inputs xᵢ to predictions yᵢ. (For example, each x might be an MNIST digit and each y a digit label.) Each prediction is completely independent of any others, and using the same x will always produce the same y.

y₁ = f(x₁)
 y₂ = f(x₂)
 y₃ = f(x₃)
 # ...

Recurrent networks introduce a hidden state that gets carried over each time we run the model. The model now takes the old h as an input, and produces a new h as output, each time we run it.

h = # ... initial state ...
diff --git a/latest/search.html b/latest/search.html
index d94fbbc3..a9cd7ed4 100644
--- a/latest/search.html
+++ b/latest/search.html
@@ -6,4 +6,4 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

Search

Search

Number of results: loading...

    +

    Search

    Search

    Number of results: loading...

      diff --git a/latest/training/optimisers.html b/latest/training/optimisers.html index ebb018ea..949cb4f1 100644 --- a/latest/training/optimisers.html +++ b/latest/training/optimisers.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

      Optimisers

      Optimisers

      Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.

      W = param(rand(2, 5))
      +

      Optimisers

      Optimisers

      Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.

      W = param(rand(2, 5))
       b = param(rand(2))
       
       predict(x) = W*x .+ b
      diff --git a/latest/training/training.html b/latest/training/training.html
      index b8012d4a..9ab44956 100644
      --- a/latest/training/training.html
      +++ b/latest/training/training.html
      @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
       
       ga('create', 'UA-36890222-9', 'auto');
       ga('send', 'pageview');
      -

      Training

      Training

      To actually train a model we need three things:

      • A model loss function, that evaluates how well a model is doing given some input data.

      • A collection of data points that will be provided to the loss function.

      • An optimiser that will update the model parameters appropriately.

      With these we can call Flux.train!:

      Flux.train!(modelLoss, data, opt)

      There are plenty of examples in the model zoo.

      Loss Functions

      The loss that we defined in basics is completely valid for training. We can also define a loss in terms of some model:

      m = Chain(
      +

      Training

      Training

      To actually train a model we need three things:

      • A model loss function, that evaluates how well a model is doing given some input data.

      • A collection of data points that will be provided to the loss function.

      • An optimiser that will update the model parameters appropriately.

      With these we can call Flux.train!:

      Flux.train!(modelLoss, data, opt)

      There are plenty of examples in the model zoo.

      Loss Functions

      The loss that we defined in basics is completely valid for training. We can also define a loss in terms of some model:

      m = Chain(
         Dense(784, 32, σ),
         Dense(32, 10), softmax)