Forward Pass for BatchNorm Added

This commit is contained in:
Avik Pal 2018-06-12 17:49:21 +05:30
parent 8f7ee76752
commit d4b066fdf9

View File

@ -1,5 +1,7 @@
using CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, libcudnn_handle, using CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, cudnnTensorDescriptor_t,
cudnnDataType, TensorDesc, FilterDesc cudnnBatchNormMode_t, cudnnHandle_t, libcudnn_handle, cudnnDataType, TensorDesc, FilterDesc
using CuArrays
using Flux
mutable struct DropoutDesc mutable struct DropoutDesc
ptr::Ptr{Void} ptr::Ptr{Void}
@ -22,6 +24,92 @@ function DropoutDesc(ρ::Real; seed::Integer=0)
return desc return desc
end end
CuParam{T,N} = Union{CuArray{T,N},TrackedArray{T,N,CuArray{T,N}}}
CuBatchNorm{T} = Flux.BatchNorm{<:Union{typeof(identity),typeof(relu)},
<:CuParam{T,1},<:CuArray{T,1},
<:Union{Float32,Float64}}
CuBatchNorm(chs::Integer, λ = identity;
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1) =
BatchNorm(λ, param(cu(initβ(Float32,chs))), param(cu(initγ(Float32,chs))),
zeros(Float32,chs), ones(Float32,chs), ϵ, momentum, true)
const BATCHNORM_SPATIAL = 1
const BATCHNORM_ACTIVATION = 0
const BATCHNORM_MIN_EPS = 1e-5
@inline _wsize(y) = ((1 for _=1:ndims(y)-2)..., size(y)[end-1], 1)
mutable struct bncache
mean
ivar
end
bncache() = bncache(nothing, nothing)
(CuBN::CuBatchNorm)(x::CuArray{T}) where T<:Union{Float32, Float64} =
CuBN.λ.(cudnnBatchNormalizationForward(CuBN.γ, CuBN.β, x, CuBN.μ, CuBN.σ, CuBN.momentum, eps = CuBN.ϵ, training = CuBN.active))
function cudnnBatchNormalizationForward(g::CuArray{T}, b::CuArray{T}, x::CuArray{T},
running_mean::CuArray{T}, running_var::CuArray{T},
momentum::T; cache = nothing,
alpha = T(1), beta = T(0),
eps = T(1e-5), training = true) where T<:Union{Float32, Float64}
y = similar(x)
dims = _wsize(x)
if(eps < BATCHNORM_MIN_EPS)
warn("eps ",eps," is too small for CuDNN so eps has been assigned the value ", BATCHNORM_MIN_EPS)
eps = BATCHNORM_MIN_EPS
end
if(training)
if(cache !== nothing)
mean = cu(zeros(T, dims...))
ivar = cu(ones(T, dims...))
else
mean = C_NULL
ivar = C_NULL
end
@check ccall((:cudnnBatchNormalizationForwardTraining, libcudnn), cudnnStatus_t,
(cudnnHandle_t,cudnnBatchNormMode_t,Ptr{Void}, Ptr{Void},
Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Void},
Ptr{Void},Ptr{Void},Ptr{Void},
Cdouble,Ptr{Void},Ptr{Void},
Cdouble,Ptr{Void},Ptr{Void}),
libcudnn_handle[], BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
TensorDesc(x), x,
TensorDesc(y), y,
TensorDesc(g), g, b,
momentum, running_mean, running_var,
eps, mean, ivar)
if(cache !== nothing)
cache.mean = mean
cache.invvar = ivar
end
else
@check ccall((:cudnnBatchNormalizationForwardInference, libcudnn), cudnnStatus_t,
(cudnnHandle_t,cudnnBatchNormMode_t,Ptr{Void}, Ptr{Void},
Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Void},
Ptr{Void},Ptr{Void},Ptr{Void},
Ptr{Void},Ptr{Void},
Cdouble),
libcudnn_handle[], BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
TensorDesc(x), x,
TensorDesc(y), y,
TensorDesc(g), g, b,
running_mean, running_var,
eps)
end
y
end
const RNN_RELU = 0 # Stock RNN with ReLu activation const RNN_RELU = 0 # Stock RNN with ReLu activation
const RNN_TANH = 1 # Stock RNN with tanh activation const RNN_TANH = 1 # Stock RNN with tanh activation
const LSTM = 2 # LSTM with no peephole connections const LSTM = 2 # LSTM with no peephole connections